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Liquid crystal defects are used as probes to study the local reorientation dynamics of the nematic

surface director on SiOx alignment layers. The tracking of the defect’s motion reveals the presence of solid

friction forces, unexpected in this complex viscous fluid. We identify the director pinning due to a surface

quenched disorder as a possible mechanism that gives rise to the measured solid friction.
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The dynamics of two solids in contact relies on specific
interactions and dissipation mechanisms localized at the
interface. For a solid body sliding on a solid substrate
the resistant force is given by the Coulomb’s law stating
that the friction force is independent from the relative
velocity [1]. Its physical origin is still debated. In particu-
lar, pinning by disordered asperities of the contacts [2] and
irreversible processes like plastic deformations [3] all play
significant roles. The solid elasticity is also of importance
since it conveys the surface forces to the solid bulk. The
solid friction therefore emerges from the competition be-
tween driving forces, disorder, plasticity and elasticity. The
case of simple fluids is different: despite the usual no-slip
boundary conditions a force applied to the bulk always
induces a viscous flow. A complex fluid might, however,
present elastic properties and therefore could in principle
support solid friction.

We focus here on nematic liquid crystals characterized
by an orientational order along an average direction: the
director n. A rotational viscosity and elastic torques are
related to this additional degree of freedom [4]. A rota-
tional solid friction conveyed by elastic torques is therefore
possible. It is, however, noticeable that only a few experi-
mental works have focused on the liquid crystal surface
orientational dynamics [5]. The surface director ns is
usually oriented along a fixed direction n0, the so-called
anchoring easy axis. If an external torque is applied, ns

may depart from n0. The surface dynamics is then often
described by the competition between the external torque,
a restoring anchoring torque, and a viscous surface one
[5–7]. Such a simple approach cannot, however, explain
phenomena such as gliding, a slow reorientation of the easy
axis observed under large elastic torques that dissipates the
stored elastic energy [8]. This irreversible behavior is, in a
sense, similar to the plastic deformation of the contacts
between two solid bodies. The surface disorder could also
be a source of rotational solid friction. This role has been
rarely discussed [9] but even a weak disorder should
strongly influence the surface reorientation dynamics [10].

In this Letter, we examine the orientation dynamics
of the nematic director on silicon oxide, an extensively

characterized alignment layer. This dynamics is monitored
through macroscopic defects moving on the surface. A
quantitative analysis unambiguously reveals the presence
of solid friction forces, which are equivalent to a solid
friction torque for the surface director. Led by the analogy
with the solid-solid friction, sensitive to both interface
disorder and plastic mechanisms, we discuss the respective
roles of the easy-axis disorder and the ‘‘plastic’’ memori-
zation effect on the measured dynamics.
We have chosen the well-documented 4-cyano-4’-n-

pentylbiphenyl (5CB) nematic liquid crystal and SiOx

anchoring layer [11]. A nematic cell of typical thickness
10 �m is formed by assembling two 1 mm thick glass
plates. A planar anchoring is previously induced on both
plates by evaporating a 15 nm thick SiOx layer [11,12] at
oblique incidence (60�). The plates are assembled with
parallel easy axes to obtain a uniform planar director
orientation. Contrary to other deposition techniques such
as polymer rubbing, SiOx evaporation provides a rather
homogeneous alignment layer down to the micron scale
with only nanometer-scaled height undulations [11]. For
5CB, it gives a strong zenithal anchoring [13] but a much
weaker azimuthal one [14], enabling the rotation of the
director in the substrate plane. After filling, the cell is
introduced in a hot stage (Instec STC200D, regulated at
�0:1�) and observed with a polarizing microscope
equipped with a CCD camera (Pulnix TM-6703).
We examined the dynamics of � walls, characterized by

a 180� azimuthal rotation of the director between two
equivalent regions [Fig. 1(a)]. Such defects are easily
obtained by cooling from the isotropic phase [15–17].
The walls either terminate in vertical �1=2 disclinations
[18] [Fig. 1(b)] or form closed loops [Fig. 1(c)] separating
the director field into two distinct domains. Large diameter
loops are motionless and are still observed after months,
whereas smaller diameter ones slowly shrink and then
vanish with increasing velocity [Fig. 2(a)]. The irregular
morphology of initial loops rapidly evolves toward a cir-
cular shape during the first steps of relaxation. The quanti-
tative tracking of the radius R with time [Fig. 2(b)] then
reveals that the loop dynamics is accurately fitted [19] by
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an affine law between the radial velocity v ¼ dR=dt
and R�1:

v / 1

R
� 1

Rc

; (1)

Rc being a critical radius for which the loop is motionless.
The loops’ shrinkage is formally equivalent to the dis-

appearance of Bloch walls separating ferromagnetic do-
mains of opposite magnetization. This analogy has already
been used by Shenoy et al. [10] to examine the relaxation
dynamics of reverse tilt loop domains in a nematic cell and
compare them to Ising models that can include disorder. In
the simplest uniform Ising model where a loop is viscously
damped, the relaxation checks v / R�1 [10] which clearly
contradicts Eq. (1). Entering into a more quantitative ap-
proach, a � wall moves under the curvature-induced force
f� ¼ �=R where the line tension � comes from both the

bulk nematic elasticity and the anchoring energy. The line
tension was computed from the equilibrium director ori-
entation ’eðx; zÞ of a straight wall in Refs. [15,16]. Using
here the one-constant approximation (single nematic elas-
tic modulus K), and a Rapini-Papoular anchoring energy

[20] Waðns;n0Þ ¼ �ðK=LÞðns:n0Þ2 (L is the azimuthal
extrapolation length), it amounts to a value of order K:

� ¼ 2K

�
�

2
� arctan

�
L�

d

�
þ

Z 1

0

arctanð d
L� tÞ

t
dt

�
; (2)

where d is the cell thickness. A bulk drag force, at least,
opposes the motion. It comes from the nematic orienta-
tional viscosity and can be computed in an adiabatic ap-
proximation from the dissipation occurring in a wall
moving laterally along x, with a variation of the director
azimuthal angle ’ðx; z; tÞ ¼ ’eðx� vt; zÞ:

fv ¼ �1

v

ZZ �
@’

@t

�
2
dxdz ¼ �v; (3)

where �1 is the rotational viscosity and the drag coefficient
� ¼ �1

RRð@’e=@xÞ2dxdz is independent from the veloc-

ity. The competition of the forces fv and f� finally yields

v ¼ �=�R. This dynamics is not observed but the data
follow:

v ¼ �

�

�
1

R
� 1

Rc

�
; (4)

with a nearly constant slope �=� about 1:2� 10�10 m2=s
in the 1 �m< d< 20 �m range [see Fig. 3(b)]. This
value is compatible with typical data at 34 �C: K ¼
4� 10�12 N, L ¼ 0:2 �m [21], �1 ¼ 0:034 Pa � s [22].
The bulk dissipation therefore predominantly accounts
for the wall viscous dissipation (this, however, does not
exclude an additional weak surface viscous term).
More surprisingly, expression (4) reveals the presence of

an additional force per unit length fc ¼ �=Rc acting as a
solid friction force. When the local curvature radius R of
the wall is larger than Rc, the line tension � is too weak to
displace the wall, pinned on the substrate. For R< Rc, the
defect moves but two forces oppose the motion, the viscous
force fv / v and a constant one fc. We observe such a
force in many other geometries including the stationary
motion of elongated loops (detailed in Ref. [23]). This
force ultimately originates from interactions between the
substrate and the surface director. It defines a phenomeno-
logical solid friction torque per unit area � opposing its
rotation. When the wall moves a distance of �x, the non-
viscous energy dissipation (fc�x) is also the integrated
energy dissipation of �ð’Þ under the reorientation �’ðxÞ ¼
�x@’eðx; 0Þ=@x on both surfaces. The mean friction torque
per unit area is then h�i ¼ fc=2�. For 5CB on SiOx, its
value is of order 10�7 N=m and it decreases rapidly
[Fig. 3(a)] at the nematic to isotropic phase transition
(35:3 �C). Note finally that the wall motion is smooth ex-
cept near Rc where phenomena classically associated with
solid friction such as stick-slip motions and avalanches are
observed at the optical resolution limit. This suggests that
the underlying mechanisms occur at this scale (� 100 nm).
We discuss now their possible origins and especially focus
on the role of disorder which is commonly found to be at
the origin of threshold forces for elastic media.

FIG. 2 (color online). Top: Relaxation of a �-wall loop ob-
served between slightly uncrossed polarizers. Bottom and inset:
the decreasing radius (open squares) of a circular loop with time
is accurately fitted after integration of Eq. (1). The dependance
v / R�1 with the same initial and final points is also shown as a
dashed curve. Error bars are smaller than the symbols.

FIG. 1 (color online). (a) Sketch of the director field in a �
wall. The azimuthal angle ’eðx; y; zÞ changes between 0 and �
and gets �=2 at the center of the wall. The walls form either
between two �1=2 disclinations (b) or as closed loops (c). The
surface director lines only are shown in the top views.
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Such solid friction forces are indeed not restricted to the
case of two bodies in contact but are also found in many
other condensed matter systems such as the domain walls
in thin magnetic films [24], the contact line of a liquid on a
substrate [25–27] or the vortices in a superconductor [28].
Similarly, the measured force fc can be seen as the pinning
force acting on an elastic line in a disordered environment
at the depinning threshold [29,30]. In the Ising model
examined in Ref. [10], a disorder of random bond type
(i.e., randomness in the local wall energy) is necessary to
account for the coarsening dynamics of the tilt domains. In
the SiOx case, the randomness has to be related to the
interface. Several types of disorder have already been
evidenced in SiOx layers. Structural TEM characterizations
[11] have indeed revealed the presence of complex needle
structures at the nanometer scale. At larger scale, a weak
topographic disorder with nanometer height undulations
has been characterized by atomic force microscopy up to
the micron scale [31]. Whatever the exact nature of disor-
der, its influence on the surface director dynamics can be
approached through the spatial heterogeneities of either the
anchoring strength or the easy axis. Spatial heterogeneities
ofL are difficultly evidenced at the micron scale but a weak
easy-axis disorder has been observed down to optical reso-
lution [32] with a typical easy-axis angular standard devia-
tion of 1�. It indicates that a quenched disorder of a few
degrees of amplitude affects n0 at submicronic scale. Let us
examine if such a disorder is compatible with a random
bond disorder acting on the moving � wall.

For sake of simplicity, we consider the influence of a
weak disorder along x characterized by an angular

dispersion of the surface easy axis �0ðxÞ identical on
both substrates. Because of the disorder, a � wall centered
in x ¼ x0 is slightly distorted and is now described by an
azimuthal orientation ’ðx; zÞ ¼ ’eðx� x0; zÞ þ �’ðx; zÞ.
The free energy per unit length of the wall in the one-
constant approximation is the sum of the bulk elastic
energy and the surface Rapini-Papoular anchoring:

Ew ¼
Z
V

K

2
ðr’Þ2dvþ

Z
S

K

2L
sin2ð’��0Þds: (5)

After a Taylor expansion on �0ðxÞ � � and using the fact
that ’eðx� x0; zÞminimizes Ew in absence of disorder, we
obtain, at first order in �0ðxÞ:

Ew ¼ �þ Ed þWw=d (6)

where Ed is the background free energy due to the disorder
�0 andWw=d is a coupling term between the undistorted �
wall and the disorder:

Ww=d ¼�
Z K

L
sin’eðx� x0Þcos’eðx� x0Þ�0ðxÞdx: (7)

This coupling gives a force per unit length:

Fw=d ¼
Z K

L
sin’eðxÞ cos’eðxÞ@�0ðxþ x0Þ

@x0
dx: (8)

These expressions simply show that a wall spontane-
ously settles on regions where cos’e and �0ðxÞ are of the
same sign (Fig. 4). The disorder thus creates loci made of
anchoring energy traps and antitraps which pin the � wall
in energy wells. An additional threshold force is then
required to escape the potential wells and solid friction
forces originate from the easy-axis heterogeneities.
As for other elastic systems such as domain walls in thin

magnetic films [24] or the contact line of a liquid on a
substrate [25–27], static and dynamic properties of the wall
are governed by a complex competition between the bidi-
mensional disorder that induces roughness and the elastic
energy which tends to keep it locally straight. A further
analysis, especially for collective pinning, will require a
dedicated treatment. Simply note that the magnitude of the
pinning force is given by Eq. (8) in the case of strong
pinning, i.e., when the width of the wall at the surface (of
order L [16]) is comparable to the size a of the traps. The
yield force necessary to overcome the pinning is then
K��0=a where ��0 is the amplitude of the easy-axis
disorder. The magnitude obtained for ��0 ¼ 1�,

FIG. 3 (color online). Temperature dependance of the critical
radius Rc (a), of the solid friction force (a; inset), and of the free
energy-effective viscosity ratio �=� (b), for different sample
thicknesses.

FIG. 4 (color online). In a weak easy-axis disorder, a � wall
evolves in a complex energy landscape made of traps and anti-
traps depending on the local random easy-axis field.
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K¼ 4�10�12 N and L¼ 0:2�m, Fw=d� 3:5�10�7 N=m
is comparable to the measured value fc. Note finally that a
similar analysis for a quenched disorder of anchoring
strength gives Fw=d � K�L=L2 which has a similar mag-

nitude for a disorder amplitude �L=L ¼ 1%.
We have so far considered only the effect of elastic

pinning on a quenched disorder. As in solid-solid friction
[33], however, ‘‘plasticity’’ with nonviscous dissipation
could also play an important role. We do not consider
here a mechanical strain of the alignment layer under the
nematic torque (unlikely for oxide) but an equivalent effect
due to gliding. The easy-axis drift under the elastic torque
indeed dissipates both the stored elastic and anchoring
energy of the wall. In other words, gliding tends to trap
the wall by adapting the local easy axis to the wall surface
director and therefore reducing the driving force. The
gliding appears at first sight to be negligible since the
typical memorization time Tm on SiOx layers is the hour
[34] for a few degrees of reorientation. It is, however,
necessary to compute the corresponding dissipation rate
and compare it to the solid friction force dissipation rate
fcv. The stored energy of the wall being �, an (upper)
value of the dissipation rate due to gliding is �=Tm. This
term is independent from the wall velocity v and compares
with fcv � �v=Rc only for velocities v � Rc=Tm at least
2 orders of magnitude lower than the observed ones. This
observation rules out the surface memorization as the
origin of the observed solid friction. The wall moves too
fast for its distortion to be memorized. The memorization,
however, probably plays an important role to reinforce the
pinning of motionless loops of radius R> Rc and defi-
nitely prevents any further creep motion at very long times.

To summarize, we have explored the reorientation
dynamics of the surface director using the motion of mac-
roscopic defects as probes. The �-wall dynamics unam-
biguously reveals the presence of a solid friction force.
Differently from the usual solid-solid friction, the force is
related to an orientational degree of freedom. It therefore
defines a solid friction torque opposing the surface director
rotation. This phenomenon cannot be explained by a slow
drift of the easy axis (memorization effect), but is rather
due to the presence of disorder in the easy-axis orientation
or the anchoring strength. This work throws light on the
neglected role of a weak disorder and the possibility to use
pinning or depinning theories to approach complex liquid
crystals surface dynamics.
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