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Flexoelectricity is the linear response of polarization to a strain gradient. Here we address the simplest

class of dielectrics, namely, elemental cubic crystals, and we prove that therein there is no extrinsic

(i.e., surface) contribution to flexoelectricity in the thermodynamic limit. The flexoelectric tensor is

expressed as a bulk response of the solid, manifestly independent of surface configurations. Furthermore,

we prove that the flexoelectric responses induced by a long-wavelength phonon and by a uniform strain

gradient are identical.
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Flexoelectricity is by definition the linear response of
polarization P to the strain gradient; it is measured by the
fourth-rank Cartesian tensor �����, i.e.,

P� ¼ �����

@���
@r�

; (1)

where summation over repeated indices is understood;
such a tensor property is symmetry allowed in any dielec-
tric. In recent years, there has been much interest in creat-
ing piezoelectric composites from materials which are not
themselves piezoelectric, by exploiting flexoelectricity [1].
There have been also some measurements [2], atomistic
calculations [3], and even (very recently) first-principles
calculations for BaTiO3 and SrTiO3 [4]. However, the
basic issue of whether flexoelectricity is a pure bulk
effect—or instead it has a contribution which depends on
the surface conditions of the sample—is unsettled to date,
even for the simplest of crystalline dielectrics. It is worth
mentioning that the analogous issue about the simpler case
of piezoelectricity is far from being trivial either [5], and
spurred much discussion among theorists until two decades
ago [6]. The issue whether a material property is a bulk
effect is of the utmost importance for theorists, since in the
affirmative it can be in principle computed within peri-
odic boundary conditions: for piezoelectricity, this has
happened routinely since 1989 [7]. The most quoted theo-
retical paper on flexoelectricity, by Tagantsev [8], was
published in 1986. Tagantsev’s message is opposite to the
present one, even in the abstract; a brief critique of
Tagantsev’s work is provided at the end of this Letter.

The present work is a first step towards a bulk theory of
flexoelectricity. Here we limit ourselves to the simplest
possible case: elemental cubic crystals, having a primitive
lattice. We prove that flexoelectricity is indeed a genuine
bulk property therein: there is no surface contribution to
the flexoelectric response. The class of crystals addressed
here includes solid rare gases and little more; therefore the
present result has only academic interest. However, we
believe that the additional effects (due to sublattice
displacements and ionic screening) which occur in

nonprimitive lattices can be also tamed at the price of a
much clumsier algebra. This is briefly discussed towards
the end of this Letter.
The definition of Eq. (1) is incomplete, since one has to

specify the macroscopic field E. It is customary to define
the material constants (such as Born effective charges,
piezoelectric, and pyroelectric constants) as derivatives of
Pwith respect to the relevant variable, taken at zero field. If
we make such a choice in Eq. (1), then the flexoelectric
polarization in a nonzero field E is then

P� ¼ �����

@���
@r�

þ "1 � 1

4�
E�; (2)

where we have exploited cubic symmetry and "1 is the
dielectric constant ("0 ¼ "1 in primitive lattices). When-
ever� is a bulk effect, then Eq. (2) does not depend on the
shape of the sample; the only effect of the shape is repre-
sented by a depolarization field and included in E [9,10].
For a given shape (freestanding in zero external field), the
depolarization field dictates the surface charge at the
boundary, via the Gauss theorem. Conversely, when a
genuine surface effect contributes to the apparent polariza-
tion, some extra charge must accumulate at the boundary.
Here we choose the worse possible shape (see below),
where the depolarization field is maximum, and we show
that even in this case there is no extra boundary charge. The
absence of surface effects is confirmed by the case (dis-
cussed below) of a crystal with no boundary and a built-in
long-wavelength phonon.
In a crystal of cubic symmetry the tensor����� depends

on three independent elements: these can be evaluated in
principle by considering the uniaxial response—where
strain, strain gradient, and polarization are all aligned—
along three different directions, e.g., (100), (110), and
(111). For the sake of simplicity, in the following we label
as ‘‘x’’ any of these directions, and we address the uniaxial
flexoelectric coefficients, i.e.,

Px ¼ �xxxx

@�xx
@x

þ "1 � 1

4�
Ex: (3)
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We consider a sample in the form of a slab, where
@�xx=@x is either parallel or normal to the slab: this is
schematically shown in Fig. 1. In the former case E
vanishes and P is parallel to x (‘‘transverse’’); in the
latter case both E and P are parallel to x, and are related
by E ¼ �4�P (‘‘longitudinal’’) [9,10]. We stress that
such properties are a consequence of cubic bulk symme-
try, even if x is not a cubic direction (Fig. 1 only shows
cubic directions for the sake of simplicity). Eventually,
we will address infinitely thick slabs; the two thermody-
namic limits are different because of the long range of
Coulomb interaction.

We focus on the longitudinal case: replacement of
E ¼ �4�P into Eq. (3) yields

Ex ¼ � 4��xxxx

"1
@�xx
@x

: (4)

We are going to use this key relationship in reverse, i.e., we
will prove that in our longitudinal geometry the macro-
scopic field (i) does not depend on what happens at the slab
surfaces, (ii) is constant in the bulk of the slab, and (iii) is a
well-defined linear-response function of the material. This
proves that �xxxx is a bulk material property, and that no
surface contribution enters Eq. (1) for the class of solids
dealt with here.

Our key ingredient is the microscopic electric field EðrÞ
linearly induced by a unit displacement u‘ of the ‘th
nucleus in the otherwise unperturbed lattice. Because of
translational invariance,

@E�ðrÞ
@u‘;�

¼ E��ðr�R‘Þ (5)

and E��ðrÞ is a well-defined linear response of the system;

it goes to zero as an inverse power of jrj and admits a

multipolar expansion. We point out that the x direction is
not necessarily a cubic axis. The induced charge is given
byr �E ¼ 4��; in a primitive lattice it is an odd function
of r, and its dipole is zero because of the acoustic sum rule
[11]. Therefore, the induced perturbation is octupolar to
leading order.
We focus on the atomic plane whose equilibrium

x coordinate is Xm ¼ md, where d is the interplanar dis-
tance and m is an integer, and we reduce our problem to an
effective one-dimensional one by averaging everything in
the yz plane. The averaged microscopic E field in the x
direction induced by a rigid displacement um of the mth
atomic plane in the x direction is

�EðxÞ ¼ um �Exxðx� XmÞ; (6)

where �ExxðxÞ is the average of ExxðrÞ in the planes normal
to x. The yz-averaged induced charge is then, by the
Poisson equation

��ðxÞ ¼ 1

4�

d

dx
�EðxÞ ¼ um

1

4�

d

dx
�Exxðx� XmÞ: (7)

The conditions of zero induced monopole, dipole, and
quadrupole lead, after integration by parts, to

�Exxð1Þ ¼ �Exxð�1Þ ¼ 0;
Z 1

�1
dx �ExxðxÞ ¼ 0;

Z 1

�1
dxx �ExxðxÞ ¼ 0;

(8)

while the second moment of �E is essentially the octupole:

Z 1

�1
dxx2 �ExxðxÞ ¼ � 4�

3
Qð3Þ

xxxx; (9)

where Qð3Þ
xxxx is the third moment of the induced charge.

Actually, all moments of �ExxðxÞ are convergent integrals,
which proves that one-dimensional electrostatics is short

range: �ExxðxÞ ! 0 faster than any polynomial for x ! �1.
If our slab is subject to a constant strain gradient along x,

the displacement of the mth plane can be written as um ¼
	dm2=2. In fact, the local strain at plane m, defined as

�xxðXmÞ ¼ umþ1 � um�1

2d
; (10)

is thus �xxðXmÞ ¼ 	m (	 dimensionless constant). The
induced microscopic field, averaged over yz, is after
Eq. (6):

�EðxÞ ¼ 	d

2

X
m2slab

m2 �Exxðx� XmÞ: (11)

Here we have assumed that the terms with Xm close to the
slab edge are identical to those in the bulk; actually, they
are different, but the surface effects (due to a nonextensive
set ofm’s) cannot propagate deep in the bulk. Owing to the
short range of the perturbation within our chosen geometry,
extrinsic (i.e., surface) effects are ruled out. Actually, we

FIG. 1. Slabs with a built-in uniform strain gradient (uniaxial);
the x direction is indicated by the arrow in each panel. Top:
transverse case. Strain, strain gradient, and polarization are
parallel to the slab, while the field vanishes. Bottom: ‘‘‘longitu-
dinal’’ case. Strain, strain gradient, polarization, and depolari-
zing field are all normal to the slab. Similar figures can be drawn
even when x is not along a cubic axis.
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can replace the finite sum with the infinite one, over all m
from �1 to 1:

�EðxÞ ¼ 	d

2

X1
m¼�1

m2 �Exxðx� XmÞ: (12)

We stress that the logics leading to our formalism for the
infinite solid—via slabs of growing thicknesses—amounts
to performing the thermodynamic limit in two steps: first
along yz, and then along x. This guarantees that whenever
the um’s in Eq. (6) lead to a constant macroscopic field
E, the corresponding macroscopic polarization obeys
E ¼ �4�P.

So far we have arrived at the microscopic field induced
by a uniaxial flexoelectric distortion, Eq. (12), which is a
wildly oscillating nonperiodic function of x. At this point
we need to address the macroscopic average of �EðxÞ, in
order to prove that it is indeed a constant everywhere in the
sample. According to textbooks [12] the macroscopic field
is the convolution

hEðxÞi ¼
Z 1

�1
dx0wðx� x0Þ �Eðx0Þ � ðw � �EÞðxÞ; (13)

where wðxÞ is a real function, nonzero in some neighbor-
hood of x ¼ 0, and normalized to unity; we are going to
show that the function �EðxÞ in Eq. (12) becomes a constant
after convolution with a suitable wðxÞ. We start with the
standard window convolution function

w1ðxÞ ¼ 1

d
#ðd=2� jxjÞ; (14)

where # is the step function. Obviously w1 � f extracts the
average from any function fðxÞ periodic of period d. Next
we define the family of convolution functions

w2ðxÞ ¼ ðw1 � w1ÞðxÞ; . . . ; wnðxÞ ¼ ðw1 � wn�1ÞðxÞ: (15)

Suppose that fðxÞ is a polynomial of degree n times a
periodic function (of period d) whose average is zero: it
is easy to show that ðwnþ1 � fÞðxÞ vanishes in this case.

We write the microscopic field of Eq. (12) identically as

�EðxÞ ¼ 	

2d

X
m

ðx�mdÞ2 �Exxðx�mdÞ

� 	x

d

X
m

ðx�mdÞ �Exxðx�mdÞ

þ 	x2

2d

X
m

�Exxðx�mdÞ: (16)

If we now choose w3ðxÞ, as defined above, to perform the
macroscopic average, it is easy to see that both the second
and third lines of Eq. (16) yield a vanishing result. The
term in the first line is a periodic function, whose average is
obviously constant

Ex ¼ hEðxÞi ¼ 	

2d2

Z 1

�1
dxx2 �ExxðxÞ ¼ � 4�	

6d2
Qð3Þ

xxxx;

(17)

where Eq. (9) has been used. Since our dimensionless 	
equals d@�xx=@x, Eq. (4) yields

�xxxx ¼ "1Q
ð3Þ
xxxx

6d
; (18)

which is the central result of this work, proving that the
uniaxial flexoelectric coefficient can be expressed in terms
of bulk linear-response quantities.
Using the same path as above, it is immediate to verify

that constant strain—i.e. um ¼ �xxXm—induces a vanish-
ing macroscopic field and a vanishing polarization, as it
must be: a primitive lattice is nonpiezoelectric.
In order to confirm our central result, we consider

next a long-wavelength longitudinal phonon, generalizing
Martin’s approach [5], originally devised for piezoelectri-
city, to the flexoelectric case. For a purely longitudinal
phonon along x of amplitude u and wave vector k the
displacements of the atomic planes are um ¼ ueikXm , hence
the induced microscopic electric field, after yz average, is

�EðxÞ ¼ u
X1

m¼�1
eikXm �Exxðx� XmÞ

¼ ueikx
X1

m¼�1
e�ikðx�XmÞ �Exxðx� XmÞ: (19)

This is the product of a slowly varying envelope function
times a periodic function. The macroscopic field and po-
larization at wavelength k are, therefore,

hEki ¼ u

� X1
m¼�1

e�ikðx�XmÞ �Exxðx� XmÞ
�
;

hPki ¼ � hEki
4�

¼ � u

4�d

Z 1

�1
dxe�ikx �ExxðxÞ:

(20)

Its lowest-order k expansion yields

hPki ’ u

4�d

k2

2

Z 1

�1
dxx2 �ExxðxÞ ¼ � uk2

6d
Qð3Þ

xxxx; (21)

where Eq. (9) has been used; terms of order zero and one
in k vanish owing to Eq. (8). At this point we remind that
the macroscopic strain induced by a long-wavelength
acoustic phonon is [5] �xx ¼ iuk, hence its gradient is
ik�xx ¼ �uk2. Equation (21) becomes

hPki ¼ Qð3Þ
xxxx

6d

@�xx
@x

: (22)

Comparison with our central result, Eq. (18), proves that
the flexoelectric polarization induced by a long-wave-
length phonon and the one induced by a uniform strain
gradient are the same. The trivial "1 factor simply
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accounts for the fact that our primary � definition is
transverse and not longitudinal—see Eqs. (3) and (4).

The present theory is strongly inspired by Martin’s
theory of piezoelectricity [5], although microscopic in-
duced fields are addressed here instead of induced charges.
In a piezoelectric crystal the leading multipoles are dipoles
and quadrupoles: according to Martin these uniquely
determine the piezoelectric tensor. In the simple class of
crystals considered here dipoles and quadrupoles are both
zero: we have shown that octupoles uniquely determine
the flexoelectric tensor. In this sense, flexoelectricity
can be regarded as the next higher order analogue of
piezoelectricity.

The above considerations also hint at how the present
theory can be extended to real materials of interest, for
instance to cubic perovskites [2,4]. In such crystal structure
our basic linear-response ingredients, Eq. (5), acquire a
sublattice index, i.e., E��ðrÞ ! Es;��ðrÞ; the dipoles no

longer vanish but their sum over s does, owing to the
acoustic sum rule [11]; the quadrupoles vanish since each
nuclear site is centrosymmetric. The above derivation can
therefore be extended to this case, taking into account the
fact that the dipoles are coupled to the internal strain and
yield a nonvanishing contribution, similarly to what was
done by Martin in the case of piezoelectricity [5,13]. In a
nonprimitive lattice a related qualitative feature also
occurs: "0 � "1. According to general macroscopic con-
siderations [9,10] the longitudinal and transverse polari-
zations differ by a factor "0, not "1 [14]. This implies that
the perturbed nuclear coordinates in the longitudinal and
transverse geometries are different, at variance with the
elemental case sketched in Fig. 1; this difference amounts
nonetheless to an internal strain, whose effect can be tamed
(once more, in the same way as in piezoelectricity [13]).

Last but not least, we strongly disagree with the treat-
ment of flexoelectricity provided by Tagantsev in Ref. [8],
and subsequently adopted by other authors (e.g., Ref. [3]).
This treatment is based on the rigid-ion model throughout;
since a primitive lattice has zero ionic charges, the model is
inadequate to address flexoelectricity in our case study. But
there is more to say: electrons behave quite differently
from classical point charges, and quantization phenomena
dominate macroscopic polarization, sometimes in counter-
intuitive ways [15]. One of the purportedly nonbulk con-
tributions to flexoelectricity is the charge second moment
per unit volume of the unperturbed macroscopic sample
(symbol ‘‘I’’ in Refs [3,8]). For a centrosymmetric insulat-
ing material, whose surfaces are also insulating, this quan-
tity vanishes owing to the theorem of quantization of the
surface charge [16]; the theorem is generally violated by a

system of classical point charges. Other flaws of Ref. [8]
are the presence of conditionally convergent sums, without
any prescription about their thermodynamic limit, and the
lack of any relationship between shape and macroscopic
field in the polarized sample.
In conclusion, we have achieved a first basic step to-

wards a bulk theory of flexoelectricity. We have shown
that—in the simplest class of dielectrics at least—there is
no surface contribution to flexoelectricity, which is a there-
fore a pure bulk effect. Furthermore, the bulk flexoelectric
responses for either long-wavelength phonons or uniform
strain gradient are the same; they are expressed in terms of
quantities which are manifestly surface independent.
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