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Extending mode-coupling theory, we elaborate a microscopic theory for the glass transition of liquids

confined between two parallel flat hard walls. The theory contains the standard mode-coupling theory

equations in bulk and in two dimensions as limiting cases and requires as input solely the equilibrium

density profile and the structure factors of the fluid in confinement. We evaluate the phase diagram as a

function of the distance of the plates for the case of a hard sphere fluid and obtain an oscillatory behavior

of the glass transition line as a result of the structural changes related to layering.
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Dense liquids display an intriguing complex dynamical
behavior upon approaching the glass transition, as mani-
fested, for example, in the drastic slowing down of trans-
port, the appearance of stretched structural relaxation, or
the emergence of power laws at mesoscopic time scales
[1]. For bulk systems, a scenario of the evolution of slow
complex dynamics has been presented by the mode-
coupling theory (MCT) of the glass transition, many
aspects of which have been confirmed in the past two
decades by experiments and computer simulations [1,2].
Yet, it is not obvious how the approximations capture the
collective rearranging of the local cages which is expected
to occur via increasing cooperativity. Therefore, significant
research effort has been performed recently to confine
the liquid to small pores, films, or tubes [3–5], since these
experiments may hold the key to directly unravel the
essence of the glass transition.

Computer simulations have shown that walls, in general,
induce already significant changes in the static structure and,
in particular, smooth walls lead to layering [6]. Second, it
has been found that the dynamical features and transport
properties quantified, e.g., by the diffusivity [7], are strongly
influenced by confinement. Here, the liquid-wall interac-
tions play an important role: While Lennard-Jones interac-
tions lead to higher glass transition temperatures by
increasing the confinement [8,9], the opposite happens for
purely repulsive walls [10]. Interestingly, the drastic
dynamical changes persist even in a model for an artificial
pore, where the static structure remains identical to the
bulk system [8,9].

Experimental results from confocal microscopy applied
to colloidal suspensions between two quasiparallel walls
reveal a decrease of the critical packing fraction [11] due to
confinement and a smaller mean-square displacement par-
allel and close to the walls [12]. The mean-square displace-
ment perpendicular to the walls exhibits an oscillatory
dependence on the distance to the plates, in contrast to
the mean-square displacement parallel to the walls [11].
A similar oscillatory behavior of the diffusivities of a

monodisperse system of hard spheres with packing fraction
’ ¼ 0:40 between two parallel and flat walls has recently
been found from a computer simulation, however, for a
direction perpendicular and parallel to the wall [7]. The
glass transition of a single layer of binary colloidal
mixtures [13] displays essentially similar features as in
bulk, which suggests that the MCT is applicable also for
the two-dimensional case [14–16].
In this Letter, we extend the MCT to inhomogeneous

liquids confined between two parallel flat hard walls
without surface roughness. The derivation employs
symmetry-adapted eigenfunctions and a corresponding
splitting of the current densities. Then the theory will
continuously interpolate between the glass transition in
two dimensions and in bulk and relies solely on the equi-
librium structure of the fluid in confinement. As an
example, we consider a hard sphere fluid and determine
the glass transition line for various distances of the plates.
In particular, we obtain the oscillatory behavior of the glass
transition line as a result of the structural changes
connected to the layering.
Let us mention that the MCT has already been applied to

liquids in random porous media modeled by a quenched
matrix of particles [17]. This kind of MCT is quite similar
to the MCT for the Lorentz model where a particle diffuses
through randomly distributed obstacles [18] and has no
relationship to what we aim at here. Another interesting
approach is the extension of the MCT to liquids in external
fields [19] to calculate the linear response of the intermedi-
ate scattering function to a weak slowly varying perturba-
tion in order to deduce a divergent dynamical length. Here,
in contrast, we consider strong confining potentials with
variations even on microscopic length scales. As far as we
know, the MCT has never been extended to such situations,
particularly to a slit, cylindrical geometries, etc., where
layering occurs.
We consider a liquid of N particles confined between

two parallel flat hard walls which restrict the centers of
particles to the slab between �L=2. The microscopic
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density �ð ~x; tÞ can be decomposed into suitable Fourier
modes

��ð ~q; tÞ ¼
XN

n¼1

exp½iQ�znðtÞ�ei ~q�~rnðtÞ; (1)

where ~rnðtÞ ¼ ðxnðtÞ; ynðtÞÞ and znðtÞ denote the position of
the nth particle parallel and perpendicular to the wall,
respectively. The discrete values Q� ¼ 2��=L, � 2 Z,
account for the confined geometry, and ~q ¼ ðqx; qyÞ refers
to the wave vector parallel to the walls.

The walls induce a nontrivial density profile perpendicu-
lar to the confinement nðzÞ ¼ h�ð ~x; tÞi that can be repre-
sented as a Fourier series with Fourier coefficients

n� ¼ RL=2
�L=2 nðzÞ exp½iQ�z�dz. For a later purpose, we

also introduce the local specific volume vðzÞ :¼ 1=nðzÞ;
its Fourier coefficients v� are related to n� by a convolu-

tion
P

�n���v��� ¼ L2���.

The quantities of basic interest are the time-dependent
correlation functions of density modes. Here, the inter-
mediate scattering function is generalized to the infinite
dimensional matrix ½Sðq; tÞ��� ¼ S��ðq; tÞ with elements

S��ðq; tÞ ¼ 1

N
h���ð ~q; tÞ����ð ~q; 0Þi; (2)

where ���ð ~q; tÞ ¼ ��ð ~q; tÞ � h��ð ~q; tÞi denotes the

density fluctuation. Mirror reflection and time inversion
symmetry (for Newtonian dynamics) implies n�� ¼ n�,

v�� ¼ v�, and S��;��ðq; tÞ ¼ S��ðq; tÞ ¼ S��ðq; tÞ ¼
S��ðq; tÞ�; in particular, S��ðq; tÞ is real symmetric.

The continuity equation relates the densities ��ð ~q; tÞ to a
corresponding current ~j�ð ~q; tÞ. The crucial step, in contrast
to bulk liquids, is now to decompose into a component
parallel and perpendicular to the wall, � 2 fk;?g:

j��ð ~q; tÞ ¼
XN

n¼1

b�ð ~̂q � _~rnðtÞ; _znðtÞÞ exp½iQ�znðtÞ�ei ~q� ~rnðtÞ:

(3)

Here, we abbreviated ~̂q ¼ ~q=q and introduced the selector
b�ðx; zÞ ¼ x��;k þ z��;?.

By choosing ���ð ~q; tÞ, jjj�ð ~q; tÞ, and j?� ð ~q; tÞ as distin-

guished variables, the Zwanzig-Mori projection operator
formalism [20,21] leads to

_Sðq; tÞ þ
Z t

0
dt0Kðq; t� t0ÞS�1ðqÞSðq; t0Þ ¼ 0; (4)

where SðqÞ ¼ Sðq; t ¼ 0Þ is the static correlation function.
The memory kernel Kðq; tÞ is decomposed according to

½Kðq; tÞ��� ¼ X

�;�¼?;k
b�ðq;Q�ÞK��

��ðq; tÞb�ðq;Q�Þ; (5)

and its components ½Kðq; tÞ����� ¼ K��
��ðq; tÞ satisfy

_Kðq; tÞ þ
Z t

0
dt0J ðqÞMðq; t� t0ÞKðq; t0Þ ¼ 0: (6)

The matrix of the static current density correlators

½J ðqÞ����� ¼ J ��
��ðqÞ inherits an explicit dependence on

the mode index via the average density profile

J ��
��ðqÞ ¼ hj��ð ~qÞ�j�� ð ~qÞi ¼ kBT

m

n���

n0
���; (7)

where m denotes the mass of the particles.
Following the MCT for bulk liquids [1], the memory

kernel matrix ½Mðq; tÞ����� ¼ M��
��ðq; tÞ can be approxi-

mated as a functional of the density correlators

M��
��ðq; tÞ � F ��

��½Sðk; tÞ; q�
¼ X

~q1; ~q2¼ ~q� ~q1

X

�1�2

X

�1�2

V ��
��1�2;��1�2

ð ~q; ~q1; ~q2Þ

� S�1�1
ðq1; tÞS�2�2

ðq2; tÞ; (8)

with the vertices

V ��
��1�2;��1�2ð ~q; ~q1; ~q2Þ

¼ 1

2N

n40
L8

X

�;�0
v���½b�ð ~̂q � ~q1; Q���2

Þc�1;���2
ðq1Þ

þ ð1 $ 2Þ�½b�ð ~̂q � ~q1; Q�0��2
Þc�1;�

0��2
ðq1Þ

þ ð1 $ 2Þ�v���0 : (9)

Here, the direct correlation functions ½cðqÞ��� ¼ c��ðqÞ
are related to the static correlators S��ðqÞ by the inhomo-

geneous Ornstein-Zernike equation [22]

S�1ðqÞ ¼ n0
L2

½v� cðqÞ�; (10)

and ½v��� ¼ v���.

TheMCTapproximation for the memory kernel leads to a
closed set of Eqs. (4)–(9) for the density correlators
S��ðq; tÞ. Note that this set is valid for any one-component

liquid between two parallel flat hard walls with arbitrary
particle-particle and arbitrary particle-wall interactions.
These interactions enter into the equations only via the static
quantities ��, v�, and S��ðqÞ. Let us emphasize that in

contrast to bulk systems also the Fourier coefficients v� of

the inverse density profile enter the vertices. One can prove
[23] that this set reduces to the well-known MCT equations
for a bulk liquid [1] for L ! 1 and to those derived for a
two-dimensional liquid, L ! 0 [14]. Consequently, the
MCT equations (4)–(9) interpolate between a two- and a
three-dimensional liquid, as required. Since the glassy
dynamics is identical for both Newtonian and Brownian
motion [1], our results apply also to colloidal suspensions.
To locate the glass transition point, one has to solve the

self-consistent set of equations for the nonergodicity
parameters F��ðqÞ :¼ limt!1S��ðq; tÞ:

FðqÞ ¼ ½S�1ðqÞ þ S�1ðqÞKðqÞS�1ðqÞ��1;

½KðqÞ��� ¼ X

�;�¼k;?
b�ðq;Q�Þ½F�1½FðkÞ;q������b�ðq;Q�Þ:

(11)
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In the following, we determine the glass transition line
for hard spheres of diameter 	 confined between two hard
walls of distance H ¼ Lþ 	. For the numerical solution
of Eq. (11), one has to truncate the Fourier indices
j�j � M and q has to be discretized [23]. Because of the
large increase in complexity, the maximum possible value
has been M ¼ 3. In the two-dimensional limit H=	 ! 1,
only the lowest mode contributes: S��ðq; tÞ ! S00ðq; tÞ
�����0. Already for H=	 * 2 higher order modes

j�j> 0 have to be taken into account, particularly
for H=	 	 1. Therefore we have also performed a sub-
sequent diagonalization approximation (DA), where
only the diagonal elements S��ðqÞ, c��ðqÞ, F��ðqÞ, and
F ��

��½fF��ðkÞg; q� have been taken as nonzero, allowing us

to handle M ¼ 10.
The static input quantities were obtained by first calcu-

lating the density profile nðzÞ within the fundamental mea-
sure theory [24]. These results are used as input into the
inhomogeneous Ornstein-Zernike equation, which is then
solved with the Percus-Yevick closure relation [25]. The
depletion forces give rise to a strongly enhanced density
profile in the vicinity of walls, which results in the char-
acteristic layering. The principal peak in the static structure
factor S00ðqÞ at q	 � 2� is higher for the half-integer
distance H=	 ¼ 2:5 than for both integer distances
H=	 ¼ 2:0 and 3.0; see Fig. 1. Consequently, the static
correlations appear reduced in the case that a few mono-
layers just fit between the walls, and one anticipates this
layering effect to have drastic influences on the glass
transition.

The maximum packing fraction ’ :¼ �n	3=6 (n ¼
n0=H) for which we were able to reliably calculate the
static input quantities has been for ’ ¼ 0:42, so far, not

large enough to induce a transition. Therefore we mimic
the increase of the static correlations by an additional
multiplicative control parameter 
 in front of the MCT

functional F ��
�� . Let ’cðHÞ be the critical packing fraction

for 
 ¼ 1. Then, if ’ is below and close to ’cðHÞ, the
vertices vary linearly with ’, and we therefore expect that
the H dependence of ’cðHÞ is qualitatively well described
by the H dependence of the critical parameter 
cðH;’Þ.
Figure 2 depicts 
cðH; 0:42Þ obtained with and without DA
for M ¼ 3; both graphs strongly resemble each other,
particularly in the region 2:0 � H=	 � 4:0 where 
c has
larger variation in contrast to H=	> 4:0. The larger
absolute values of 
c without DA may originate from a
partial cancellation in the vertices. Increasing the cutoffM
in the DA, i.e., taking into account higher order modes,
we found that 
cðH; 0:42Þ does not change qualitatively
(not shown).
As argued above, we expect for ’cðHÞ qualitatively a

similar H dependence as we have found for 
cðH; 0:42Þ.
Now assume ’ fixed below ’cðHÞ. Then, the distance
[’cðHÞ � ’] to the glass transition point is maximum
(minimum) for those H for which the 
cðH;’Þ is maximal
(minimal). The MCT predicts for the diffusivity

DMCTðH;’Þ 
 ½’cðHÞ � ’��ðHÞ, where �ðHÞ does not
depend sensitively on the type of the liquid and is close
to 2. Therefore, by assuming only a weak dependence of �
on H, the MCT predicts a maximum diffusivity at
ðH=	ÞMCT

max � 2:0, � 3:1, � 3:8, and � 5. These values
are surprisingly close to the corresponding values from
the simulation (Fig. 2), particularly for hD?isim. Note that
the variation of the diffusivity with H is much less pro-
nounced for H=	> 4:0 than for H=	< 4:0, which is
reproduced by the MCT, as well.
In conclusion, we have generalized the MCT to liquids

confined between two parallel flat walls for arbitrary
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FIG. 1 (color online). Static correlators S00ðqÞ for ’ ¼ 0:42
for different distances H of the plates. The first sharp diffraction
peak varies nonmonotonically: lowest for H ¼ 2:0	, highest for
H ¼ 2:5	, and intermediate for H ¼ 3:0	. Inset: The corre-
sponding off-diagonal structure factor S01ðqÞ is negative and
becomes smaller upon increasing H.
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FIG. 2 (color online). Critical parameter 
cðH;’ ¼ 0:42Þ for
M ¼ 3, with DA and without DA, and the dimensionless
diffusivities Djj and D?, respectively, taken from Ref. [7] for

’ ¼ 0:40.
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particle-particle and particle-wall interactions. The theory
differs in several important aspects from the corresponding
one in bulk and in the plane. First, the walls exchange
momentum with the fluid, implying that the intermediate
scattering function is no longer diagonal in the wave
number. Second, the theory requires a splitting of
the currents in order to capture the limits L ! 	 and
L ! 1. Furthermore, the theory requires explicitly the
density profile induced by the confinement, in addition to
the generalized structure factors, which renders the glass
transition line sensitive to layering effects. We have exem-
plified the predictive power of the theory by reproducing
the nonmonotonic behavior of the diffusivity for hard
spheres on the confinement. Particularly, its different be-
havior for integer and half-integer values of H=	 can be
interpreted as follows. If H=	 equals an integer r, then
exactly r monolayers fit into the slit. If the monolayers
were perfectly flat, they could slide. In order to get a
structural arrest, ’ has to be increased. If H=	 deviates
stronger from r, the monolayers become rougher and
penetrate into each other, which reduces the particle’s
mobility and hence the packing fraction for a structural
arrest. This interpretation is consistent with the H depen-
dence of the principal peak of S00ðqÞ; see Fig. 1.

The H dependence of D has also been related to that of
static quantities such as the excess entropy sex and the
available volume fraction �p0. Knowledge of the bulk dif-
fusivity Dbulk then yields DðH; . . .Þ � DbulkðxðHÞ; . . . Þ for
x ¼ sex; �p0 provided D is not too small [26]. In the MCT x
corresponds to ’cðHÞ, and, if �ðHÞ is almost constant, a
similar relation DMCTðH; . . .Þ � DMCT

bulk ð’cðHÞ; . . . Þ holds.
Calculating sexðHÞ and �p0ðHÞ from the fundamental mea-
sure theory, we find that sex and �p0 are not constant on the
glass transition line. However, the H dependence of ’c is
in phase with that of sex and �p0, demonstrating the impor-
tance of the latter for the glass transition.

Recently, it has been shown that bulk binary mixtures of
hard spheres [27,28] or hard disks [15] display an intrigu-
ing dependence on composition. In confinement these
mixing effects compete with the layering induced by the
walls and should give rise to an even richer phase behavior.
It is instructive to also compare the glass transition line
with the random close packing values. For hard disk mix-
tures in the plane both lines exhibit a striking similarity
[15], and the random close packing of a binary mixture of
hard spheres in confinement displays an oscillatory depen-
dence on the distance of the walls [29]. Thus, it would be
interesting to extend the MCT also to mixtures in confine-
ment. In addition, the theory presented here constitutes a
promising framework to rationalize the numerous glass-
forming systems in simple confinements that have been
investigated in the recent past [5]. Furthermore, it is a
challenge for the future to extend the MCT also to pore
models for which the static properties are unaffected
whereas the dynamical features sensitively depend on the
confinement [8,9].
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