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We investigate the origins of the widely observed ‘“‘en passant™ crack pattern, which forms through
interactions between two approaching cracks. A rectangular elastic plate is notched on each long side and
then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along
approximately straight paths until they pass each other, after which they curve and release a lenticular
fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an
aspect ratio of 2:1, with the length scale set by the initial crack offset s and the time scale set by the ratio of
s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a
simple geometric model of the crack-crack interaction.

DOI: 10.1103/PhysRevLett.105.125505

Brittle failure through multiple cracks occurs in a wide
variety of contexts, from microscopic failures in dental
enamel [1] and cleaved silicon [2] to geological faults
[3,4] and planetary ice crusts [5]. In each of these situ-
ations, with complicated curvature and stress geometries,
pairwise interactions between approaching cracks nonethe-
less produce characteristically curved fracture paths known
in the geologic literature as en passant cracks [6]. While the
fragmentation of solids via many interacting cracks has
seen wide investigation [7], less attention has been paid to
the details of individual crack-crack interactions [8].
Despite extensive observations of the phenomenon of over-
lapping cracks in geologic settings [3,4,6,9] as well as
controlled laboratory experiments [10,11] and simulations
[12], an understanding of how similar shapes arise from
different dynamics remains lacking.

Through experiments and a simple geometric model, we
elucidate the mechanism behind these two-crack interac-
tions and quantify the scaling properties which allow for
the same shape in diverse situations. We choose a geometry
for which two-crack interactions are the dominant failure
mode of the material: a uniaxial strain test on two prepared
notches on opposite lateral sides of an elastic sample. As
the ends of the sample are pulled apart quasistatically, the
two notches propagate inward as single cracks until they
pass and begin to curve towards each other, cutting out a
lenticular fragment [see Figs. 1(b)-1(f)]. The direction of
this curvature is controlled by the ratio of mode I and II
stress intensity factors [9]. Both the fragment and the
original material undergo no significant plastic deforma-
tion, placing the process in the brittle regime.

Using materials varying in bulk modulus, Poisson ratio,
and heterogeneity, we uncover a universal, scale-invariant
shape and dynamics for this two-crack interaction. The
shape of the final fragment exhibits rate, material, and
scale invariance, with an aspect ratio (length:width) of
I'=2 and an approximately square root shape which
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begins at the point where the two cracks pass each other
during propagation. We observe that the length scale of the
fracture curvature is set by only the initial notch offset s
and that the time scale is set by the ratio of s to the pulling
velocity v. In order to explain this universal shape, we
construct a simple geometric model for the interaction
dynamics based on the observed stress axes. This simple
model provides a quantitative prediction which reproduces
both the shape of the lens and its aspect ratio.
Experiment.—We perform experiments on sheets of
various materials in a motorized frame which pulls one
edge of the sheet away from the opposite edge. To start, we
cut a pair of offset notches separated by a distance 4 < s <
35 mm; these two cuts instigate the cracks which propa-
gate inward and interact under uniaxial strain until they cut
out a lenticular fragment, visible in Fig. 1(f). The sheets
are approximately 10 X 20 cm?, and pulling velocities are
0.7-14 mm/s. We collect data on the crack propagation
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FIG. 1. (a) Experiment schematic, with side 1 stationary and
side 2 pulled at constant velocity v. The point at which the two
crack paths first cross their mutual perpendicular sets ¢ = 0, and
[x, ] = 0. (b)~(f) Detail of gelatin sheet showing dynamics.
Detail of photoelastic response of gelatin sheet (g) before and
(h) during crack curvature.
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and interaction by using three techniques: shape analysis of
the final fragment, crack-tip tracking to capture the dy-
namics, and photoelastic imaging of the stress axes. For the
final shape analysis, we remove the fragment from the
apparatus and perform measurements on an unstressed
sample. We track the location of the tip on images taken
every 4 s [see Figs. 1(b)-1(f)]; during this tracking, the
sample remains in a stressed state. For the gelatin samples,
we can use a polariscope to visualize the internal stresses
during fracture [13], as shown in Figs. 1(g) and 1(h).

The experiments investigate the effect of the initial crack
offset s, thickness h, material properties, and pulling
velocity v. Our primary material is 7 wt% gelatin
(E ~ 10° Pa, v = 0.4-0.5, h = 8 mm) [14], with compari-
son runs in nitrile (E ~ 10° Pa, » ~ 0.5, h = 0.1 mm)
[15], cork (E ~ 107 Pa, » ~ 0, h = 3 or 6 mm), polysty-
rene foam (E ~ 10° Pa, v ~ 0, h = 6 mm) [16], and alu-
minum foil (E ~ 10'! Pa, » ~ 0.3, # = 0.02 mm). These
materials are selected for their diversity of material prop-
erties and cover the full range of Poisson ratio values from
0 to 0.5. For the gelatin, which is weak enough to break
under its own weight, we support the sheet from below by
using a clear sheet lubricated with vegetable oil or water to
minimize the frictional interaction with the substrate. The
ends of the gelatin sheets are affixed to the apparatus by
means of mesh brackets cast into the sheet during prepa-
ration. All other materials are clamped at their ends and
hang under their own weight; as a result, the sheet is not
constrained to remain in a single plane during fracture.
Surprisingly, we find that for thin slabs # does not have a
measurable effect on the shape, indicating that we are
operating in a two-dimensional plane stress regime. For
gelatin slabs with # = 30 mm, the bottom of the crack lags
behind the top but retains the same shape.

Shape.—For each final fragment, we measure the length
L and width W, with W = s corresponding to the initially
parallel crack edges [see Fig. 1(f)]. As shown in Fig. 2(a),
we observe an aspect ratio I' = L/W = 2, independent of
s, material, and v. Remarkably, I" is constant even for runs
in which the sheet curved out of plane, had nonparallel
initial cracks, or was subjected to shear in addition to the
tensile strain. For the last two cases, the cracks reoriented
to two straight paths perpendicular to the direction of
loading, thereby still resulting in a fragment with I' = 2.

To examine the universality of the shape which resulted
in I' = 2, we examine 8 gelatin fragments scanned at 600
dpi resolution. For each, we extract the coordinates [€, w]
along the edge connecting the midpoint of the fragment to
the tip, as shown in Fig. 2(b). Note that the two initial
cracks (separated by s) remain approximately parallel until
they reach this midpoint, after which they curve towards
each other along the path €(w). These dynamics will be
further quantified below. We examine the shape of
the fragment by scaling both coordinates of €(w) by s
and averaging over the ensemble of fragments. Each
half-fragment spans 0 <w <1 and 0 <€ < 1; the full
length is 2€, corresponding to I' = 2. The average shape
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FIG. 2 (color online). (a) Measurement of aspect ratio I' of
final fragments for constant-v fracture of 5 materials; the dotted
line is L = 2W. (b) Average of edges €(w) for 8 gelatin frag-
ments, with both lengths scaled by s. The dashed line is Eq. (1)
with A=1 and a = %, which corresponds to the model
[Eq. (4)]. Inset: Sample image of fragment showing length L,
width W = s, and extracted edge €(w). (c) Power-law exponent
« as a function of W, obtained from fitting Eq. (1); the dashed
line is mean (@) = 0.49. (d) Power-law prefactor A as a function
of W, obtained from fitting Eq. (1) with fixed & = %; the dashed
line is mean (A) = 0.97. In (¢),(d) the paired points connected by
vertical bars correspond to the two sides of a single fragment.
All fits to Eq. (1) are performed over the portion of €(w) with
w/s >0.1.

(€(w)) has an approximately power-law shape over much
of its length, with the exponent varying from % initially
to 4 for w/s = 0.1.

Motivated by this average shape, we fit each edge (two
from each fragment) to the functional form

gy o

for the region w/s > 0.1 and find mean values of (A) =
0.97 = 0.03 and (@) = 0.49 = 0.01, with no systematic
dependence on s, material properties, or v [see Figs. 2(c)
and 2(d)]. Individual fragments vary from this mean be-
havior, particularly when the initial cracks were imper-
fectly parallel or the gelatin sheet was poorly lubricated.
Thus, we conclude that the initial crack offset s sets not
only L and W of the final fragment but is the only input to
the universal shape function given in Eq. (1).
Dynamics.—To characterize the dynamics which result
in this characteristic shape, we track the two crack-tip
positions for runs started from different s and pulled at three
different v. We record the coordinates [x;(¢), y;(¢)], where
i = 1 for the stationary side and i = 2 for the pulled side.
We set the origin of our moving coordinate system so
that [x, y] = 0 at the midpoint between the two tips and
take + = 0 at the interpolated time when the two crack paths
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cross y = 0. The offset between the crack tips is measured
at t =0 to be Ax. = x;(0) — x,(0) = s, which can be
influenced by slight repulsion near ¢ = 0 [8,9,11]. In addi-
tion, the characteristic time scale 7 = Ax,./v is used to
make comparisons between runs at different v, and we scale
all distances by Ax,. The resulting scaled variables are

X ~ Vi
Ax,’ Vi Ax,’

= 2)

) X;

A~

In tracking the dynamics of the tip, all measurements are
made on a stressed sample.

Figures 3(a) and 3(b) examine both individual (thin lines)
and average (thick lines) trajectories, demonstrating that
the scaling in Eq. (2) collapses the curves into a universal
shape; no systematic dependence on Ax, or v is present in
the scatter. Note that X(7) is on average constant for 7 < 0,
indicating that little crack curvature is taking place at this
stage. This results in each final fragment containing two
parallel edges at opposite ends of the fragment. In addition,
we observe that each crack initially behaves as if it were a
single, isolated crack pulled at half the velocity, as shown in
Fig. 3(c). For either a single crack or one of a crack pair,
y « (t + t,)*3, indicating acceleration, followed by rapid
deceleration at t = 0. We refer to 7 < 0 as the preinteraction
stage and 7 > 0 as the interaction stage.

To examine how the observed similarity in €(w) arises
from the dynamics, we consider (%, (7)) and (¥, (7)), where
(+) is the average over the 12 examples. During the inter-
action stage, (J) is observed to grow only logarithmically
[see Fig. 3(d)]. This slowing down can be understood in
terms of the rotation of the fragment, rather than fracture,
becoming the dominant means of accommodating strain the
thinner the remaining connection becomes [see Fig. 1(f)].

These dynamics highlight several important features of
the en passant crack geometry which may be quite general.
First, the interaction between the cracks starts only when
the tips pass each other. From that point, all length scales
are set by the crack offset s and all time scales are set by the
ratio of this offset to v. The final shape has an aspect ratio

o[ —single
— pair -

FIG. 3. (a) %;(7) and (b) 7,(7) for 12 experiments on gelatin at
v = 0.7, 1.4, and 2.9 mm/s. (c) Preinteraction stage: y,(¢) for a
single crack (v =0.7 mm/s) and a double crack (v =
1.4 mm/s). y, <0 is the starting coordinate of each crack at
time 7, < 0. (d) Interaction stage: (¥(7)).

I' = 2 for materials with diverse elastic properties, includ-
ing elastic modulus, Poisson ratio, and heterogeneity. The
curved portion of the fragment takes a power-law shape
with an exponent close to %

This universal shape suggests that a geometric model
can provide insight into the dynamics, without reference to
the full elastic problem. Initially, the crack paths remain
straight and parallel because there is a large bulk region
between the cracks, allowing the line of maximum tension
to be aligned with the boundary loading. This is pure mode
I fracture and proceeds identically to a single crack, with-
out torque [see Fig. 3(c)]. However, once the crack tips
pass each other, the line of maximum tension within the
central region rotates and connects the tips. This provides a
net torque on the central part of the sample and leads to
locally mixed mode I and II loading. At each strain incre-
ment, the line connecting the two tips rotates, and the
subsequent fracture occurs relative to this new line.
These features can be observed in the polariscope images
of the internal stresses show in Figs. 1(g) and 1(h).

Model.—We construct a simple geometric model of the
two-crack interaction for 7 > 0 starting from three assump-
tions: first, that the maximal tension is largest along the
straight line connecting the two cracks tips and second, that
each crack propagates orthogonal to this direction by the
principle of local symmetry, whereby mode I is selected
over mode II [17]. These two assumptions alone are suffi-
cient to generate curvature in the crack-tip trajectory: Once
the cracks have moved past each other, the line connecting
the tips rotates, and the crack direction rotates with it. For
simplicity, we also assume that the two tips remain later-
ally separated by their initial offset 5. As can be seen from
Fig. 3(a), X remains in the vicinity of % for 7 > 0 but with
additional dynamics, not captured by the model.

To formulate this model algebraically, we establish a
coordinate system [see Fig. 4(a)] around the center of
symmetry. Within this frame, the two edges are pulled
away at equal and opposite velocities. During each strain
interval, each outer crack edge (ﬁo) moves a distance dx
away from the center. By continuity, each inner edge (151-)
moves in the opposite direction by the same amount. Each
crack propagates forward to relieve the resulting stress,
with the direction set by the orthogonality condition and a
distance chosen to keep each tip at fixed x coordinate = 5.
At each strain interval, the coordinates of the left-side tip
are 7 = [— 5, y] and the cracking direction is normal to this
vector, in the direction 71 = [1, iy]. Thus, for each outward

displacement by dx, the outer edge R, = [x, 0] will move
leftward by —dx so that x — x — dx, the inner edge 13,- =
[—(s + x), 0] will move rightward by dx, and the y coor-
dinate of the tip will advance by y—y+ % to
correspondingly relieve the strain. This provides the dif-
ferential equation

_dy_ K

dx 2y )

125505-3



week ending

PRL 105, 125505 (2010) PHYSICAL REVIEW LETTERS 17 SEPTEMBER 2010
@ ° © In conclusion, we have identified the length and time

Y scales which control a generic two-crack interaction prob-
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FIG. 4 (color online). (a) Model solution (thick lines) during
interaction stage (7 > 0), with definitions of variables. Model in
(b) the final state and (c) translated from the final state to show
crack edges superimposed on the experimental image.
Comparison to A = 1, 3 shown as thin lines in (c).

Integration yields (£)> = —(3 + %), where the constant of
integration is set by y(—$) = 0. To compare with the
experimental results, we define § =2 and ¥ = —(J +9),
which leads to the simple shape

y =z )

The crack propagation stops when the inner crack edge
meets the tip of the other crack, which sits at % . This occurs
when —(s+x;) =4 or, equivalently, X, =73, = 1.
Importantly, this solution matches the I' =2 shown
in Fig. 2(a) and (A) = 0.97 and (a) = 0.49 shown in
Figs. 2(c) and 2(d). For comparison, we have superimposed
the model prediction on an experimentally obtained image
in Fig. 4(c) and find excellent agreement except at the early
stages of curvature. This early regime corresponds to the
portion of the shape with a = % in Fig. 2(b) and to the time
immediately after 7 = 0 in Fig. 3(a).

While we have constructed the model in terms of
boundary-driven strain increments dx, Eq. (3) and the
same final shape would result for any brittle fracture mecha-
nism, including cyclic thermal expansion and contraction,
as long as the crack growth still occurred in the direction
normal to the line separating two tips which remained at
fixed separation. For a boundary loading which provides a
different stress intensity factor ratio than observed here, the
crack may grow at a larger or smaller (nonorthogonal) angle
with respect to 7 [9]. In such a case, the factor of 2 in Eq. (3)

dy _ s

can be generalized to a constant A with — 22 = . When

integrated, the solutions for A # 2 retain o = 3.a universal
exponent, but have A = A(A) and therefore I' # 2, as
shown in Fig. 4(c). This last case is noteworthy, since in
geologic observations, I' > 2 is commonly observed [4]. In
experiments where we provide additional lateral boundary
stresses, we are able to achieve both larger and smaller
aspect ratios. This raises the possibility of using lenticular
crack shapes as a diagnostic for the stress conditions under
which cracks were formed in nature [18]. In particular, I"
may serve as a means to infer the boundary loading in
situations where history and dynamics are inaccessible,
for instance, in observations of Europa’s ice sheets [5].

tensile stress follows a straight line connecting the tips, and
the cracks propagate perpendicular to this line.

The investigators are grateful to Pedro Reis and Benoit
Roman for instigating this investigation, and for later con-
tributions regarding interpretation, and to Matteo Ciccotti,
Nicholas Hayman, James Puckett, and Michael Shearer for
useful discussions. We thank NSF for support under Grants
No. DMS-0604047 and No. DMR-0644743.

*kdaniel @ncsu.edu

[1] S. Bechtle, S. Habelitz, A. Klocke, T. Fett, and G.A.
Schneider, Biomaterials 31, 375 (2010).

[2] K.D. Gronwald and M. Henzler, Appl. Phys. A 34, 253
(1984).

[3] D.D. Pollard and A. Aydin, J. Geophys. Res. 89, 10017
(1984).

[4] V. Acocella, A. Gudmundsson, and R. Funiciello, J. Struct.
Geol. 22, 1233 (2000).

[5] G.W. Patterson and J. W. Head, Icarus 205, 528 (2010).

[6] R.L. Kranz, Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
16, 37 (1979).

[7] D.D. Pollard and A. Aydin, Geol. Soc. Am. Bull. 100,
1181 (1988); C. Allain and L. Limat, Phys. Rev. Lett. 74,
2981 (1995); J. Astrom and J. Timonen, Phys. Rev. Lett. 79,
3684 (1997); J. A. Astrom, B. L. Holian, and J. Timonen,
Phys. Rev. Lett. 84,3061 (2000); K. T. Leung and Z. Neda,
Phys. Rev. Lett. 85, 662 (2000); F. Wittel, F. Kun, H.J.
Herrmann, and B. H. Kroplin, Phys. Rev. Lett. 93, 035504
(2004); E. A. Jagla, Phys. Rev. E 69, 056212 (2004); S.
Bohn, L. Pauchard, and Y. Couder, Phys. Rev. E71, 046214
(2005); S. Tarafdar and S. Sinha, Ind. Eng. Chem. Res. 47,
6459 (2008).

[8] S. Melin, Int. J. Fract. 23, 37 (1983).

[9] D.D. Pollard, P. Segall, and P. T. Delaney, Geol. Soc. Am.
Bull. 93, 1291 (1982).

[10] M.V. Swain and J. T. Hagan, Eng. Fract. Mech. 10, 299
(1978); N.J. Mills and N. Walker, Eng. Fract. Mech. 13,479
(1980); D. Hull, Int. J. Fract. 70, 59 (1995); V. Acocella,
Earth Planet. Sci. Lett. 265, 379 (2008); T. Tentler and V.
Acocella, J. Geophys. Res. 115, B01401 (2010).

[11] P.-P. Cortet, G. Huillard, L. Vanel, and S. Ciliberto, J. Stat.
Mech. (2008) P10022.

[12] J.C.Sempere and K. C. Macdonald, Tectonics 5, 151 (1986);
H.C.M. Chan, Eng. Fract. Mech. 39,433 (1991); P. Baud and
T. Reuschle, Geophys. J. Int. 130, 460 (1997).

[13] K.R.Y. Simha, W.L. Fourney, D.B. Barker, and R.D.
Dick, Eng. Fract. Mech. 23, 237 (1986).

[14] A. Markidou, W.Y. Shih, and W.H. Shih, Rev. Sci.
Instrum. 76, 064302 (2005).

[15] P. A. Kakavas, J. Appl. Polym. Sci. 59, 251 (1996).

[16] J.A. Rinde, J. Appl. Polym. Sci. 14, 1913 (1970).

[17] R.V. Goldstein and R.L. Salganik, Int. J. Fract. 10, 507
(1974); B. Audoly, P. M. Reis, and B. Roman, Phys. Rev.
Lett. 95, 025502 (2005).

[18] J. Olson and D.D. Pollard, Geology 17, 345 (1989).

125505-4


http://dx.doi.org/10.1016/j.biomaterials.2009.09.050
http://dx.doi.org/10.1007/BF00616582
http://dx.doi.org/10.1007/BF00616582
http://dx.doi.org/10.1029/JB089iB12p10017
http://dx.doi.org/10.1029/JB089iB12p10017
http://dx.doi.org/10.1016/S0191-8141(00)00031-6
http://dx.doi.org/10.1016/S0191-8141(00)00031-6
http://dx.doi.org/10.1016/j.icarus.2009.07.045
http://dx.doi.org/10.1016/0148-9062(79)90773-3
http://dx.doi.org/10.1016/0148-9062(79)90773-3
http://dx.doi.org/10.1130/0016-7606(1988)100%3C1181:PIUJOT%3E2.3.CO;2
http://dx.doi.org/10.1130/0016-7606(1988)100%3C1181:PIUJOT%3E2.3.CO;2
http://dx.doi.org/10.1103/PhysRevLett.74.2981
http://dx.doi.org/10.1103/PhysRevLett.74.2981
http://dx.doi.org/10.1103/PhysRevLett.79.3684
http://dx.doi.org/10.1103/PhysRevLett.79.3684
http://dx.doi.org/10.1103/PhysRevLett.84.3061
http://dx.doi.org/10.1103/PhysRevLett.85.662
http://dx.doi.org/10.1103/PhysRevLett.93.035504
http://dx.doi.org/10.1103/PhysRevLett.93.035504
http://dx.doi.org/10.1103/PhysRevE.69.056212
http://dx.doi.org/10.1103/PhysRevE.71.046214
http://dx.doi.org/10.1103/PhysRevE.71.046214
http://dx.doi.org/10.1021/ie071375x
http://dx.doi.org/10.1021/ie071375x
http://dx.doi.org/10.1007/BF00020156
http://dx.doi.org/10.1130/0016-7606(1982)93%3C1291:FAIODE%3E2.0.CO;2
http://dx.doi.org/10.1130/0016-7606(1982)93%3C1291:FAIODE%3E2.0.CO;2
http://dx.doi.org/10.1016/0013-7944(78)90013-9
http://dx.doi.org/10.1016/0013-7944(78)90013-9
http://dx.doi.org/10.1016/0013-7944(80)90079-X
http://dx.doi.org/10.1016/0013-7944(80)90079-X
http://dx.doi.org/10.1007/BF00018136
http://dx.doi.org/10.1016/j.epsl.2007.10.025
http://dx.doi.org/10.1029/2008JB006269
http://dx.doi.org/10.1088/1742-5468/2008/10/P10022
http://dx.doi.org/10.1088/1742-5468/2008/10/P10022
http://dx.doi.org/10.1029/TC005i001p00151
http://dx.doi.org/10.1016/0013-7944(91)90055-6
http://dx.doi.org/10.1111/j.1365-246X.1997.tb05661.x
http://dx.doi.org/10.1016/0013-7944(86)90190-6
http://dx.doi.org/10.1063/1.1928407
http://dx.doi.org/10.1063/1.1928407
http://dx.doi.org/10.1002/(SICI)1097-4628(19960110)59:2%3C251::AID-APP9%3E3.0.CO;2-W
http://dx.doi.org/10.1002/app.1970.070140801
http://dx.doi.org/10.1007/BF00155254
http://dx.doi.org/10.1007/BF00155254
http://dx.doi.org/10.1103/PhysRevLett.95.025502
http://dx.doi.org/10.1103/PhysRevLett.95.025502
http://dx.doi.org/10.1130/0091-7613(1989)017%3C0345:IPFNFP%3E2.3.CO;2

