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Using electron correlograph analysis we show that coherent nanodiffraction patterns from sputtered
amorphous silicon indicate that there is more local crystallinity in unannealed amorphous silicon than was
previously suspected. By comparing with simulations for various models we show that within a typical
unannealed amorphous silicon film a substantial volume fraction (> 50%) is topologically crystalline with
correlation lengths up to 2 nm. Electron correlograph analysis is a variant of the fluctuation electron
microscopy technique and its sensitivity to local crystalline ordering is derived from its sensitivity to four-

body correlations.
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Amorphous silicon is an important electronic material
whose properties depend on the topological details of its
atomic structure. The presence of crystalline topology at
medium-range length scales (= 1 nm) has long been de-
bated [1], since conventional diffraction explores only
short-range two-body distributions [2,3]. Fluctuation elec-
tron microscopy (FEM), which examines the statistics of
spatially-resolved coherent diffraction to obtain four-body
atomic correlations [4,5], confirms that there is medium-
range topological order in amorphous silicon that is not
present in a continuous random network (CRN) [6,7].
However, because of difficulties inverting FEM data, there
remains an ambiguity about the volume fraction of ordered
material [8]. In this Letter we develop a new variant of the
FEM technique, electron correlograph analysis, which
examines angular autocorrelations of coherent nanodif-
fraction patterns [9—12], and show that within a typical
unannealed amorphous silicon film a substantial volume
fraction (> 50%) is topologically crystalline with correla-
tion lengths up to 2 nm.

While topological order can be obvious in a picture of a
network, many structural techniques, such as diffraction,
that are sensitive only to atomic position correlations and
not connectivity, can miss topological order if it is con-
strained to a medium-range length scale (1-3 nm). It is now
well recognized that measurements detecting higher-order
atomic positional correlations, such as fluctuation electron
microscopy, are much more sensitive to the presence of
medium-range topology.

Fluctuation electron microscopy examines the mean and
the variance of the scattered intensity from small probed
sample volumes as a function of scattering vector k and
probe size R. A CRN should give an approximately con-
stant normalized diffraction variance, V(k, R), which is
defined as
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I(r,, k, R) is the diffracted intensity distribution from the
sample region centered at r,, and the angular brackets
represent averages over the ensemble of probed areas.
Experimentally, the probe size (resolution) R = 1.22/0Q
where Q is the reciprocal diameter of the circular probe-
forming aperture, neglecting aberrations. The key to
the sensitivity of FEM is that it depends on higher-order,
four-body, structural correlation functions. Using high-
resolution atomic-scale probes is counterproductive in
FEM; the normalized variance is maximized when the
probed volume width, R, is comparable to the mean struc-
tural correlation length A of the sample, R = A. The cor-
relation length of the ordering can be estimated by FEM,
and is typically 1-2 nm for evaporated amorphous silicon
(a-Si) [13]. A series of detailed follow-up studies have
revealed the ubiquity of “paracrystalline” medium-range
order in amorphous tetrahedral semiconductors that have
not been annealed [14,15]. Paracrystallites are small re-
gions in the a-Si sample that exhibit a crystalline bonding
topology, but are strongly deformed. When the topological
correlations are significantly longer than about 3 nm, such
samples become polycrystalline, exhibiting long-range or-
der, and conventional diffraction and imaging are again the
preferred tools for their study. However, the volume fraction
of ordered material is hard to estimate reliably because
FEM data is hard to invert, and some have suggested that
paracrystallinity, while present, is a minority phase [8,16].

Recently, a related approach to examining higher-order
correlations has been reexamined by Wochner et. al. [12]
The angular cross-correlations in coherent x-ray nanodif-
fraction patterns from a sub-micron-diameter colloidal
glass were studied, and the symmetries of small regions
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were identified experimentally. This approach has its ori-
gins in the work of Clark, Ackerson and Hurd for lasers [9],
and Rodenburg, Cowley, and colleagues for electrons
[10,17,18]. We have implemented a variant of this tech-
nique using the scanning transmission electron microscope
(STEM) approach to FEM (STFEM) by collecting a series
of coherent nanodiffraction patterns. We find that there is a
statistically meaningful incidence of cubic silicon 111 and
222 Friedel-peak correlations, indicating that there is a
substantial volume of topologically crystalline silicon
within the sample. (Friedel’s Law states that, under weak
scattering from a real potential, the diffracted intensity
exhibits roto-inversion symmetry. Thus, if a ikl reflection
appears, then a / k [ reflection appears also.)

In our experiments, a 20-nm thick freestanding a-Si
sample, prepared by sputtering at 200 °C onto amorphous
carbon, was examined in a Tecnai F20 ST field emission
scanning-transmission electron microscope (TEM-STEM)
operating at 200 kV. The sample was argon plasma cleaned
to remove the carbon support film before observation. The
structure of the a-Si film was not affected by this cleaning.
These samples have been studied extensively by FEM
before, and are typical of paracrystalline a Si [8]. The
instrument was operated in nanodiffraction mode using
a range of spatially coherent probe sizes, R, between
0.3-2.3 nm. For each probe size a series of 200 coherent
nanodiffraction patterns was obtained at different probe
positions on the sample. This is the standard approach for
STFEM [19]. Figure 1(a) shows a typical a-Si coherent
nanodiffraction pattern obtained for a R = 2.3 nm probe.
The reciprocal diameter, Q, of the probe-forming aperture
is indicated by the white disk in the lower left of the figure.

Correlographs reveal the correlations between bright
features (speckle) in individual diffraction patterns, and
provide new insight. Correlographs, G(R, k, ¢), from the
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FIG. 1. (a) Typical electron coherent nanodiffraction pattern
from the 20-nm thick amorphous silicon film using a probe of
nominal resolution 2.3 nm. (b) The associated correlograph. The
scattering vector k for both the nanodiffraction pattern and
correlograph are aligned on the plot. The vertical axis on the
correlograph represents the azimuthal angle ¢. (c) Logarithm of
the azimuthally-averaged mean diffracted intensity versus k for
200 nanodiffraction patterns. (d) Normalized variance plot for
this sample, showing the three signature peaks confirming the
presence of paracrystallinity.

diffraction patterns of each probed region were obtained by
first remapping individual nanodiffraction patterns on a
polar grid, with coordinates k (reciprocal lattice vector)
and ¢ (azimuthal angle). The normalized autocorrelation
function along the azimuthal ¢ axis was calculated for
each diffraction pattern

IR, 7, k, (R, 1), k, p + A))y B
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Here, A is a dummy variable representing integration over
the full 360° azimuthal angle for an angular offset of ¢.
G(R, ryk ¢) is similar to the four-point cross-correlation
function introduced by Wochner et al. [12] For each probe
size R, the spatially averaged correlograph over all probed
locations r is computed I'(R, k, ¢) = (G(R, r k, d))),p.

The correlograph for the coherent nanodiffraction pat-
tern is shown in Fig. 1(b). The logarithm of the
azimuthally-averaged mean diffraction intensity for all
200 patterns is displayed in Fig. 1(c). The associated
normalized variance plot [Fig. 1(d)] shows the three pro-
nounced signature peaks for paracrystallinity in a-Si, re-
producing previous measurements on these samples [8].

For our sample of «-Si, individual correlographs
G(R, r,k ¢) for each probed region centered at Ty
display pronounced variation (Fig. 2). Strong bands of
contrast occur near the 111, 220, and 222 characteristic
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FIG. 2. Typical correlographs taken from four probe positions
on the sample for a probe resolution 1.0 nm. Correlographs are
highly variable between scanned points and tend to show strong
features near scattering vectors corresponding to strong Bragg
reflections, hkl, of crystalline cubic silicon. Strong correlations
can also occur near forbidden reflections such as 110 and 200.
The uniform grey band on the left is from the beam stop. The
semiangle subtended by the illumination disk along the k axis is
indicated by the black bar.
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cubic silicon reflections—evidence of pervasive crystalline
topology. No two regions show identical patterns.
However, when we average over 200 patterns, the resulting
mean correlographs I'(R, k, ¢) are reproducible for a given
sample (Fig. 3), and inform us about the average correla-
tions. For high-resolution probes, R < 0.5 nm [Fig. 3(a)],
we observe essentially no strong correlations. As the probe
size approaches R ~ 1 nm [Fig. 3(b)] a Friedel peak at
111 appears at ¢ = 180° for k-vectors close to the cubic
Si 111 band. In addition, there is evidence of weak 110 and
020 at *90° to the nominally-forbidden 110 and 200
reflections. As the probe size becomes larger [Figs. 3(c)
and 3(d)], the Friedel 111 peak gets stronger and a 222
Friedel peak appears at the 222 band as an arc, and the
forbidden reflections fade. A weak 311 correlation ap-
pears, but no strong Friedel 220 correlation appears at
the 220 band. These details are consistent with the pres-
ence of twinning on the 111 planes, introducing a hexago-
nal topology, which attenuates some of the 220 reflections
and allows intensity at the 110 and 200 positions. The arc
shape at higher k has been explained by Rodenburg [20] in
terms of the Ewald sphere intercepting higher-order Laue
zone reflections of the diffraction disk, which are generated
by ordered regions in the sample. In random samples (such
as a CRN), Friedel’s law does not often apply to bright
diffraction spots because the Ewald sphere curvature is
high compared with the inverse of the specimen thickness.
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FIG. 3. Mean correlographs, averaged over 200 probed posi-
tions for four different probe resolutions, R. (a) R = 0.3 nm.
(b) R=1.0nm. (c) R=1.5nm. (d) R = 2.3 nm. The high-
resolution correlograph, (a), shows little correlation. The lower-
resolution correlographs (b),(c), and (d) show strong 180°
Friedel correlations between the 111 and 111 peaks, and the
222 and 222 Friedel peaks. The semiangle subtended by the

illumination disk is indicated by the black bar.

However, compact ordered regions are sufficiently
extended in reciprocal space that Friedel’s law most often
applies to their diffracted beams.

To understand these results, a simple model of paracrys-
talline silicon was made by first filling space with random
points and then constructing the Voronoi tessellation. The
spread of Voronoi volumes follows a gamma distribution.
For a given mean volume, each randomly selected Voronoi
region was filled with either a randomly oriented cubic
silicon structure, or a randomly picked fragment from a
large CRN structure [21]. No attempt was made to relax
grain boundaries [22], but no atom distance closer than
0.2 nm was allowed. The model density agreed well with
that for amorphous silicon. A 40 X 40 array of kinematical
diffraction patterns from models of various thicknesses,
mean grain sizes and probe sizes were computed as a
function of the percentage crystalline fill-factor. The mean
intensity {I(r,, k, R)),p, normalized variance V(k, R), and
mean correlograph I'(R, k, ¢) were computed. Results show
that a CRN model can not explain the experimental correlo-
graphs. Computations for 1.2-nm mean-diameter grains,
20-nm thickness, and probe size R = 1.0 nm, are presented
in Fig. 4. For this model, the best overall visual fit to the
experimental data, occurs for high crystalline fill factors
= 65% [Fig. 4(c)]. This value depends on the model pa-
rameters, but it is clear our a-Si material is substantially
crystalline at the 1-2 nm length scale.
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FIG. 4. Simulated mean correlographs for a model amorphous
system with randomly-oriented unstrained cubic crystalline
grains of mean diameter 1.2 nm, arranged in a thin film made
from a CRN of thickness 20 nm. (a) 0% crystalline, 100% CRN.
(b) 35% crystalline grains, 65% CRN. (c) 65% crystalline grains,
35% CRN. (d) 100% crystalline grains, 0% CRN. The higher
crystallinity models, = 65%, reproduce the 111 and 222
Friedel peaks in the data best (indicated).
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For thin samples, <10 nm, simulations exhibit strong
Friedel correlations, including 220 and 400 correlation
peaks that do not occur strongly in our a-Si data. These
are suppressed when strain and twinning is added to our
model. Thicker models also suppress these, as seen in
Fig. 4 for 20 nm thickness. In each case, the 111 and
222 Friedel correlations persist.

The presence of Friedel correlations provides an impor-
tant clue. Friedel’s law breaks down for thicker crystallites,
and when the scattered wave front is randomized by thick
disordered samples where the weak phase object approxi-
mation is not valid [20]. Their persistence in the mean
correlographs indicates that there is nonrandom, corre-
lated, scattering in the a-Si sample—the fingerprint of
medium-range order. Individual simulated correlographs
exhibit fascinating structure, with bright and dark bands
crossing the correlograph at various angles. Wochner et al.
observed fivefold and tenfold symmetries in their colloidal
glass [12]. No such fivefold and tenfold symmetry was
observed in our silicon data.

Individual correlographs confirm that there is significant

crystalline topology in every probed region. The 111 and
222 reflections likely persist because they are common to
both the cubic and hexagonal topologies. Analysis shows
that at least 65% of our sample can be modeled as undis-
turbed, 1-nm diameter, cubic Si grains.

Three key aspects of FEM are preserved in the diffraction
correlograph approach. First, there is control of the probe
size R to ensure adequate sampling of the correlated mate-
rial. This was one reason why the earlier electron diffraction
experiments missed correlations in amorphous Si [10].
Second, it is a statistical approach rather than an attempt
to identify individual, and probably unrepeatable, features.
Third, there is access to information about four-body cor-
relations since both methods examine intensity-intensity
correlations. Information about higher-order correlations
will be found in the correlograph variance.

As we have learned from FEM studies, four-body mea-
sures of diffraction data are hard to invert to obtain models.
Generally, models are guessed and simulations are made,
which rely heavily on good guesses. Monte Carlo-type
methods are showing much promise for data inversion
[23,24], with both diffraction and variance data constrain-
ing the structural relaxation. Correlographs depend sensi-
tively on the model details, and would provide valuable
additional constraints to such methods.

Electron correlograph analysis offers a complementary
approach to FEM for exploring medium-range order, when
performed in a STEM. Variable resolution FEM provides
the length scale of paracrystalline ordering [13]. Now elec-
tron correlograph analysis provides a way to quantify the
extent of that paracrystallinity. In this study, correlograph
modelling confirms that there is substantial crystalline
topology in the a-Si sample studied here, over 65%,
and that as-deposited a-Si is not well represented by a
random network. This has significant implications for our

understanding of structure and properties in amorphous
semiconductors and related materials.
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