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We propose a method to speed up adiabatic passage techniques in two-level and three-level atoms

extending to the short-time domain their robustness with respect to parameter variations. It supplements or

substitutes the standard laser beam setups with auxiliary pulses that steer the system along the adiabatic

path. Compared to other strategies, such as composite pulses or the original adiabatic techniques, it

provides a fast and robust approach to population control.
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Introduction.—Two major routes for manipulating the
state of a quantum systemwith interacting fields are the use
of (i) resonant pulses and (ii) adiabatic methods such as
‘‘rapid’’ adiabatic passage (RAP), stimulated Raman adia-
batic passage (STIRAP), and their variants. In general
terms, simple fixed-area resonant pulses may be fast if
intense enough, but unstable with respect to errors or
fluctuations of the parameters, whereas adiabatic passage
is robust but slow. For many applications, from NMR to
quantum information processing, the ideal method should
be fast and robust, combining the best of the two worlds.
These two requirements are particularly demanding if
quantum computing is to become feasible at all. Pulse
sequences may be more stable than single pulses, but their
use is limited by the longer times required, the need to
control phase angles and pulse durations accurately, or off-
resonant excitations due to sharp pulse edges [1].
Moreover, the error compensating properties of square-
pulse sequences are not preserved when substituting
them with smooth pulses so that the design of good se-
quences requires ‘‘a good portion of experience and
magic’’ [2]. In NMR, composite pulses are being super-
seded by adiabatic passage methods [1], which have also
been very successful in chemical reaction dynamics [3],
laser cooling, atom optics [4], metrology [5], interferom-
etry [6], or cavity quantum electrodynamics [7]. When
robustness is the primary concern, they are quite sufficient,
and have as well become basic operations for quantum
information processing, to design robust gates [8,9], or in
quantum adiabatic computing [10,11]. If speed is also
important, however, the limitations may be severe [11].
Given the difficulties of composite pulses, it is natural to
look for robustness and high operation rates taking instead
the adiabatic methods as the starting point and shortening
their duration somehow. We propose here a shortcut to
adiabatic passage (‘‘SHAPE’’ hereafter) using the ‘‘tran-
sitionless quantum driving’’ algorithm by Berry [12]. The

specific applications we shall discuss are speeded-up ver-
sions of (two-level) RAP and (three-level) STIRAP, as
canonical examples of other adiabatic methods. Variants
such as fractional RAP or STIRAP, and multilevel
schemes, may be treated similarly.
The transitionless quantum driving algorithm [12] pro-

vides Hamiltonians H ðtÞ for which the adiabatic approxi-
mation for the time-dependent wave function evolving
with a reference Hamiltonian H0ðtÞ becomes exact. The
simplest Hamiltonian,H1ðtÞ, steers the dynamics along the
instantaneous eigenstates j�nðtÞi of H0ðtÞ without transi-
tions among them and without phase factors, formally in an
arbitrarily short time,

H1ðtÞ ¼ i@
X
n

j@t�nih�nj: (1)

As far as populations are concerned, the addition of H0 is
possible, but not necessary, affecting only the phases. Thus
H1 may supplement H0, when H ¼ H0 þH1, or substi-
tute it, whenH ¼ H1. At variance with Lyapunov-control
methods [13], H is independent of the time-dependent
state so it leads to simpler, linear dynamics, and provides
systematically exact solutions for adiabatic following with-
out the need for a trial and error approach [13]. The price to
pay is that information on the instantaneous eigenstates is
required, but this is not problematic in many cases. The
physical realizability of H1 needs a separate study in each
system. For example, when H0 describes a particle in a
time-dependent harmonic potential, H1 becomes a non-
local interaction [14]. (For local-interaction solutions, see
[15–17].) For a particle with spin in a time-dependent
magnetic field, H1 becomes a time-dependent magnetic
field [12]. For the atomic two- and three-level systems
studied here, H1 will involve auxiliary laser or microwave
interactions. The optional addition of H0 will imply differ-
ent physical implementations.
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Rapid adiabatic passage.—Let us consider first the
speeding up of a standard rapid adiabatic passage that
inverts the population of two levels, j1i and j2i, by sweep-
ing the radiation through resonance. This broad spread
technique originated in NMR [18] but is used in virtually
all fields where two-level systems may be controlled by
external interactions, such as laser chemistry, modern
quantum optics, or quantum information. When the fre-
quency sweep is shorter than the lifetime for spontaneous
emission and other relaxation times, it is termed rapid
adiabatic passage.

H0,H1, orH will be formulated in a (quasi-)interaction
picture here so they will carry an I superscript, to distin-
guish them from Schrödinger picture Hamiltonians (with S
subscript). This will also apply to wave functions. To set
HI

0 let us assume a semiclassical description of the (electric

dipole) interaction with the electric field E. For alkali
atoms the Rabi frequency is given by �R ¼ h2jerj1i �
E=@, r being the vector position operator of the valence
electron. Using the rotating wave approximation (RWA),
the Hamiltonian for a laser interaction with linear
polarization in x direction is HS ¼ @

2 ½j2ih1j�Re
�i!Lt þ

j1ih2j�Re
i!Lt þ!0ðj2ih2j � j1ih1jÞ�, with �R real here

and hereafter. In a laser-adapted quasi-interaction picture

based on h0ðtÞ ¼ @!LðtÞ
2 ðj2ih2j � j1ih1jÞ, the dynamics of

the wave function c IðtÞ ¼ eih0t=@c SðtÞ is governed by the

Hamiltonian HI
0 ¼ eih0t=@ðHS � h0 � t _h0Þe�ih0t=@, where

the dot denotes time derivative. (In a regular interaction
picture the evolution operator for the time-dependent h0
should be applied. Using instead the exponential e�ih0t=@

provides a simpler and exact quasi-interaction picture,

thanks to the commutation between h0 and _h0.) Using
j1i ¼ ð10Þ, j2i ¼ ð01Þ,

HI
0ðtÞ ¼

@

2

��ðtÞ �RðtÞ
�RðtÞ �ðtÞ

� �
; (2)

where �ðtÞ ¼ !0 �!L � t _!L is the effective detuning,
controlled by a change in the carrier frequency or an
alteration of the Bohr frequency by Zeeman or Stark shifts.
Note the inverse relation, !L ¼ !0 þ 1

t

R
t
0 �ðt0Þdt0. The

instantaneous eigenvectors are j��ðtÞi ¼ cos½�ðtÞ=2�j2i �
sin½�ðtÞ=2�j1i and j�þðtÞi ¼ sin½�ðtÞ=2�j2i þ
cos½�ðtÞ=2�j1i, with the mixing angle �ðtÞ �
arccos½��ðtÞ=�ðtÞ� and eigenvalues E�ðtÞ ¼ �@�=2,

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðtÞ þ�2

RðtÞ
q

. If the adiabaticity condition
1
2 j�aj � j�ðtÞj, where �a � _� ¼ ½�RðtÞ _�ðtÞ �
_�RðtÞ�ðtÞ�=�2, is satisfied, the state evolving from
jc IðtiÞi ¼ j��ðtiÞi follows the adiabatic approximation
jc I�ðtÞi ¼ expf� i

@

R
t
ti
dt0E�ðt0Þgj��ðtÞi, whereas transi-

tions will occur otherwise. Different adiabatic passage
schemes correspond to �RðtÞ and �ðtÞ for which c I�
goes from one bare state to the other. The simplest one is
the Landau-Zener scheme with constant �R and linear-in-
time �. For the examples below we shall use the more

adiabatic (and potentially faster) Allen-Eberly (AE)
scheme [19,20]: �RðtÞ ¼ �0 sechð�t=2t0Þ, �ðtÞ ¼
ð2�2t0=�Þ tanhð�t=2t0Þ. Regardless of the scheme chosen,
HI

1ðtÞ here takes the form, using Eq. (1),

HI
1ðtÞ ¼

@

2

0 �i�a

i�a 0

� �
; (3)

where (up to a phase factor) �a plays the role of the Rabi
frequency for a fast-driving field. In principle, HI

1 drives
the dynamics along the HI

0-adiabatic path in arbitrarily

short times, but there are practical limitations, such as
the laser power available. Moreover, a comparison with
HI

0 dynamics is only fair if j�aj is smaller or approxi-

mately equal to the peak Rabi frequency in the original
laser setup. Independently of the scheme chosen and in a
range of interaction times that break down the adiabaticity
condition, it is remarkable that the dynamics can be driven
along theHI

0-adiabatic path while fulfilling the inequalities

j�aj � j�j � j�0j.
The physical meaning and realizability of the fast-

driving term are determined by going back to the
Schrödinger picture: For H I ¼ HI

0 þHI
1, then H S ¼

@

2 ½ð�R þ i�aÞj2ih1je�i!Lt þ ð�R � i�aÞj1ih2jei!Lt þ
!0ðj2ih2j � j1ih1jÞ�. This implies two lasers with the
same frequency, orthogonal polarization, and differ-
ently shaped time-dependent intensities. Instead, when
H I ¼ HI

1, H S¼ @

2½i�aj2ih1je�i!Lt� i�aj1ih2jei!Lt þ
!Lðj2ih2j�j1ih1jÞ�, which requires only one interaction
and level shift engineering so that � ¼ 0. In this case the
�i factors in Eq. (3) can be dropped, which amounts to
redefining the states with constant phase factors or to
performing an axis rotation, without altering the popula-
tion transfer.
For the AE scheme the population of the excited state P2

starting from the ground state depends on the dimension-

less parameters � ¼ t0� and ! ¼ �0=� [20]: P2 ¼ 1�
sech2ð2�2=�Þcos2½�ð!2 � 4�2=�2Þ1=2�. A population
transfer near to 1 (P2 > 0:999) and stable with respect to
parameter variations is achieved for ! 	 3 and � 	 3. We
may calculate �a and the minimal time for which the
maximum of j�aj with respect to t is � �0. In the stated
range this is accurately given by �m ¼ �=ð4!Þ, or t0;m ¼
�=ð4�0Þ. The reduction factor with respect to the adiabatic
time �a 
 3 may be very significant, t0;m=ta 
 �=ð12!Þ;
this is 0.09 for ! ¼ 3 or 0.01 for ! ¼ 20. Of course the
SHAPE HamiltoniansH I may also drive the system along
the adiabatic path outside the w; � > 3 domain as illus-
trated in Fig. 1.
For comparison, the population of the excited state

due to a square � pulse with on-resonance Rabi frequency

�0 is P2 ¼ �0

� j sinð�t
2 Þj2. Complete population transfer

requires � ¼ 0 and a pulse time tR ¼ �
�0

. For the same

�0 and limiting the auxiliary laser by j�aj � �0, the
minimal characteristic time t0;m of the SHAPE method is
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t0;m ¼ tR=4. The actual interaction time to implement a

successful population inversion with the AE scheme
(SHAPE corrected or not) should be a few times t0; this
may be estimated from the dependence of the excited
population of the adiabatic state with time, which is
>0:999 for t 	 8t0. All calculations are performed by
solving numerically the dynamical equation of c I by a
Runge-Kutta method with adaptive step size control.

Figure 2 shows examples of the fidelity (F ¼ P2) with
respect to variations in the Rabi frequency and detuning
with SHAPE (AE scheme for HI

0), the evolution with HI
0

(AE scheme), a Rabi � pulse, and a composite �
2 ðxÞ�ðyÞ�

�
2 ðxÞ pulse, a fault-tolerant combination where x; y refer to

the laser polarization (and Pauli matrix) involved. Clearly
SHAPE provides a fast, robust, and efficient population
inversion compared to all other methods. All cases are for
the same �0, and in SHAPE j�aj � �0.

Stimulated Raman adiabatic passage.—Similar ideas
can be applied to three-level STIRAP. The (RWA)
Hamiltonian for the two-photon resonance case in a
laser-adapted (ordinary) interaction picture reads [7]

HI
0ðtÞ ¼

@

2

0 �pðtÞ 0
�pðtÞ 2� �sðtÞ
0 �sðtÞ 0

0
@

1
A; (4)

in terms of the Rabi frequencies for the Stokes, �sðtÞ, and
pumping lasers,�pðtÞ, and the (now constant) laser detun-

ing @� ¼ ðE2 � E1Þ � @!p ¼ ðE2 � E3Þ � @!s, !p and

!s being the corresponding laser frequencies. The instan-
taneous eigenstates j�ni are j�þðtÞi ¼ sin� sin�j1i þ
cos�j2i þ cos� sin�j3i, j��ðtÞi ¼ sin� cos�j1i �
sin�j2i þ cos� cos�j3i, and j�0ðtÞi ¼ cos�j1i � sin�j3i,
with eigenvalues EþðtÞ ¼ @�cotð�=2Þ, E0 ¼ 0, and
E�ðtÞ ¼ �@�tanð�=2Þ. The mixing angles � and �
are, respectively, defined by tan� ¼ �pðtÞ=�sðtÞ and

tanð2�Þ ¼ �=�ðtÞ, whereas now � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

pðtÞ þ�2
sðtÞ

q
.

The population transfer 1 ! 3 is realized by the ‘‘dark
state’’ j�0i. The Hamiltonian HI

1ðtÞ, see Eq. (1), takes the
form

HI
1ðtÞ ¼ i@

0 _� sin� _�
� _� sin� 0 � _� cos�

� _� _� cos� 0

0
B@

1
CA; (5)

with _� ¼ ½ _�pðtÞ�sðtÞ � _�sðtÞ�pðtÞ�=�2 and _� ¼
f½ _�pðtÞ�pðtÞ þ _�sðtÞ�sðtÞ��ðtÞg=½2�ð�2 þ�2Þ�. We

would need, in principle, three new interactions to imple-
ment this Hamiltonian. The laser fields connecting levels
1-2 and 2-3 should have the same frequency as the original
ones, and the field connecting levels 1-3 should be on
resonance with this transition. (The RWA approximation
is assumed in all cases.) If the transition 1-3 is electric-
dipole forbidden, as it is the case for hyperfine levels of
alkali atoms, a magnetic dipole transition may be used
instead, although this may limit the intensity and thus the
ability to shorten the times. By working in the adiabatic

basis we see that dh�0ðtÞjc IðtÞi=dt does not depend on _�
for an arbitrary c I, so that the 1-3 and 2-3 auxiliary fields
do not affect h�0ðtÞjc IðtÞi and are thus not necessary for a
full passage from 1 to 3. HI

1 may therefore be simplified to
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FIG. 2 (color online). Fidelity (F ¼ P2) versus the changes of
(a) the Rabi frequency from �0 to �0ð1þ �Þ, (b) the detuning
by �. SHAPE, AE scheme (solid red line) with �a � �0,
ordinary AE adiabatic passage (dotted black line), Rabi pulse
(dashed blue line), composite pulse �

2 ðxÞ�ðyÞ �2 ðxÞ (dot-dashed
purple line). �0 ¼ 2�� 5 MHz, t0 ¼ 25 ns, � ¼ 2� MHz.
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FIG. 1 (color online). Dimensionless energies (in quasi-
interaction picture) " ¼ E=ð�@Þ versus dimensionless time T ¼
t� for the AE scheme: diabatic energies (dot-dashed blue lines),
adiabatic energies (dashed orange lines), average energy evolv-
ing with HI

0 (solid purple line), average energy evolving with

H I ¼ HI
1 or H I ¼ HI

0 þHI
1 (dotted red line), indistinguish-

able from the adiabatic energy. Parameters:! ¼ 5 and � ¼ 1:22.
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FIG. 3 (color online). Level scheme (left) and evolution of
Rabi frequencies (right) in a STIRAP sequence of laser pulses,
Eq. (7), with�0 ¼ 2�� 2 MHz, � ¼ 2�� 0:1 MHz, and T ¼
4 	s, � ¼ 0:1T. �s=�0 (dashed blue line), �p=�0 (solid red

line), ~�a=�0 (dotted orange line).
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~H I
1ðtÞ ¼

@

2

0 0 i ~�a

0 0 0
�i ~�a 0 0

0
@

1
A; (6)

where ~�a ¼ 2 _�. The simplest shortcut recipe in this case is
to substitute the original two-photon transition by a special
one-photon 1-3 pulse. As in RAP, the Rabi frequency can
be kept real without affecting the results. For alkali atoms
one can generate ~HI

1 with microwaves exploiting the
atomic clock transition between ground state hyperfine
levels, with 1 and 3 as the nonmagnetic states (mF ¼ 0)
of each hyperfine level. At variance with RAP, the physical
implementation does not require here any level shift en-
gineering. Figures 3 and 4 show examples where [21]

�pðtÞ ¼ �0fðt� �Þ; �sðtÞ ¼ �0fðtÞ;

fðtÞ ¼
�
sin4ð�t=TÞ ð0< t < TÞ
0 ðotherwiseÞ:

(7)

Figure 3 shows a STIRAP Stokes-pump pulse sequence
where adiabaticity breaks down; see Fig. 4(a). Complete
transfer can be achieved using the interaction in (6); see
Figs. 3 and 4(b). With our parameters the maximum of
~�a=ð2�Þ is at 159 kHz, which can be reached with avail-
able intensities.

Discussion and outlook.—Similar ideas are applicable to
speed up adiabatic approaches in quantum information
processing [22–25], interferometric methods in supercon-
ducting qubits [26] or quantum dots [27], the creation of
entangled states [28], and techniques using avoided cross-
ing passage [29], keeping their stability versus parameter
variations. The SHAPE method is also compatible with
approaches that optimize H0, such as the quantum brachis-
tochrone [23], since, after optimizing the adiabatic process,
it leads to even shorter durations.
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