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We present an exact decomposition of the complete wave function for a system of nuclei and electrons

evolving in a time-dependent external potential. We derive formally exact equations for the nuclear and

electronic wave functions that lead to rigorous definitions of a time-dependent potential energy surface

(TDPES) and a time-dependent geometric phase. For the Hþ
2 molecular ion exposed to a laser field, the

TDPES proves to be a useful interpretive tool to identify different mechanisms of dissociation.
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Treating electron-ion correlations in molecules and sol-
ids in the presence of time-dependent external fields is a
major challenge, especially beyond the perturbative re-
gime. To make numerical calculations feasible, the de-
scription usually involves approximations such as
classical dynamics for nuclei with electron-nuclear cou-
pling provided by Ehrenfest dynamics or surface-hopping
[1], or even just static nuclei [2]. Quantum features of the
nuclear dynamics (e.g., zero-point energies, tunneling, and
interference) are included approximately in some methods
[3,4], while numerically exact solutions of the time-
dependent Schrödinger equation (TDSE) for the coupled
system of electrons and nuclei have been given for very
small systems like Hþ

2 [5]. Clearly, the full electron-
nuclear wave function contains the complete information
on the system, but it lacks the intuitive picture that poten-
tial energy surfaces (PES) can provide. To this end, ap-
proximate TDPES were introduced by Kono [6] as
instantaneous eigenvalues of the electronic Hamiltonian,
and proved extremely useful in interpreting system-field
phenomena. The concept of a TDPES arises in a different
way in Cederbaum’s recent work, where the Born-
Oppenheimer (BO) approximation is generalized to the
time-dependent case [7].

In the present Letter we provide a rigorous separation of
electronic and nuclear motion by introducing an exact
factorization of the full electron-nuclear wave function.
The factorization is a natural extension of the work of
Hunter [8], in which an exact decomposition was devel-
oped for the static problem. It leads to an exact definition of
the TDPES as well as a Berry vector potential. Berry-
Pancharatnam phases [9] are usually interpreted as arising
from an approximate decoupling of a system from ‘‘the rest
of the world’’, thereby making the system Hamiltonian
dependent on some ‘‘environmental’’ parameters. For ex-
ample, in the static BO approximation, the electronic
Hamiltonian depends parametrically on the nuclear posi-
tions; i.e., the stationary electronic Schrödinger equation is

solved for each fixed nuclear configuration R, yielding

R-dependent eigenvalues (the BO PES) and eigenfunc-

tions (the BO wave functions). If the total molecular
wave function is approximated by a single product of a
BO wave function and a nuclear wave function, the equa-
tion of motion of the latter contains a Berry-type vector
potential. One may ask: is the appearance of Berry phases a
consequence of the BO approximation or does it survive in
the exact treatment? In this Letter we demonstrate that
even in the exact treatment of the electron-nuclear system
a Berry connection appears and we prove a new relation
between this connection and the nuclear velocity field. For
a numerically exactly solvable system we calculate the
exact TDPES, demonstrate their interpretive power, and
compare with approximate treatments. Throughout this
Letter we use atomic units and the electronic and nuclear
coordinates are collectively denoted by r, R. The

Hamiltonian for a system of interacting electrons and
nuclei, evolving under a time-dependent external potential,
may be written as

Ĥ ¼ ĤBO þ Ve
extðr; tÞ þ T̂nðRÞ þ Vn

extðR; tÞ; (1)

where ĤBO is the traditional BO electronic Hamiltonian,

Ĥ BO ¼ T̂eðrÞ þ ŴeeðrÞ þ Venðr;RÞ þ ŴnnðRÞ: (2)

Here T̂nðT̂eÞ is the nuclear (electronic) kinetic energy
operator, WnnðWeeÞ is the nuclear-nuclear (electron-
electron) interaction, and Vn

extðR; tÞ and Ve
extðr; tÞ are

time-dependent external potentials acting on the nuclei
and electrons, respectively. The complete electron-nuclear
wave function satisfies the TDSE:

Ĥ�ðr;R; tÞ ¼ i@t�ðr;R; tÞ: (3)

The central statement of this Letter is the following:
Theorem I.—(a) The exact solution of Eq. (3) can be

written as a single product
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�ðr;R; tÞ ¼ �Rðr; tÞ�ðR; tÞ; (4)

where �Rðr; tÞ satisfies the normalization condition,

Z
drj�Rðr; tÞj2 ¼ 1; (5)

for any fixed nuclear configuration, R, at any

time t.
(b) The wave functions �Rðr; tÞ and �ðR; tÞ satisfy

ð Ĥelðr;R; tÞ � �ðR; tÞÞ�Rðr; tÞ ¼ i@t�Rðr; tÞ; (6)

�XNn

�¼1

1

2M�

ð� ir� þA�ðR; tÞÞ2 þ V̂n
extðR; tÞ þ �ðR; tÞ

�

� �ðR; tÞ ¼ i@t�ðR; tÞ; (7)

where the electronic Hamiltonian is

Ĥ elðr;R; tÞ ¼ ĤBO þ Ve
extðr; tÞ þ

XNn

�¼1

1

M�

�
�ð�ir� �A�ðR; tÞÞ2

2
þ

��ir��

�

þA�ðR; tÞ
�
ð�ir� �A�ðR; tÞÞ

�
: (8)

Here the scalar and vector potential terms are

�ðR; tÞ ¼ h�RðtÞjĤelðr;R; tÞ � i@tj�RðtÞir (9)

A �ðR; tÞ ¼ h�RðtÞj � ir��RðtÞir (10)

where h::j::j::ir denotes an inner product over all electronic

variables only.
Proof.—Part (a) We must show that the exact solution

�ðr;R; tÞ of the full TDSE (3) can be factorized as in

Eqs. (4) and (5). To show this, choose at each point in time

�ðR; tÞ ¼ e
iSðR;tÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

drj�ðr;R; tÞj2
q

and �Rðr; tÞ ¼
�ðr;R; tÞ=�ðR; tÞ, where SðR; tÞ is real. The normaliza-

tion condition (5) then follows immediately.
Part (b) To derive Eqs. (6)–(10), we apply Frenkel’s

stationary action principle, �
Rt1
t0 dth�jĤ � i@tj�i ¼ 0,

to the wave function (4). We require the action to be
stationary with respect to variations in �Rðr; tÞ and

�ðR; tÞ, subject to the condition (5). This then leads, after

some algebra, to Eqs. (6)–(10). Hence, the product wave
function Eq. (4) is a stationary point of the action func-
tional, but we still have to prove that this stationary point
corresponds to an exact solution of the TDSE. By evaluat-
ing i@tð�Rðr; tÞ�ðR; tÞÞ, and inserting Eqs. (6) and (7), we

verify that the full TDSE (3) is satisfied.
Theorem II.—(a) Eqs. (6)–(8) are form invariant under

the following gaugelike transformation

�Rðr; tÞ ! ~�Rðr; tÞ ¼ expði�ðR; tÞÞ�Rðr; tÞ;
�ðR; tÞ ! ~�ðR; tÞ ¼ expð�i�ðR; tÞÞ�ðR; tÞ; (11)

A�ðR; tÞ ! ~A�ðR; tÞ ¼ A�ðR; tÞ þ r��ðR; tÞ
�ðR; tÞ ! ~�ðR; tÞ ¼ �ðR; tÞ þ @t�ðR; tÞ: (12)

(b) The wave functions �Rðr; tÞ and �ðR; tÞ yielding a

given solution, �ðr;R; tÞ, of Eq. (3) are unique up to

within the (R, t)-dependent phase transformation (11).

Proof.—The form invariance of Eqs. (6)–(8) is easily
verified by inserting (11) and (12) into Eqs. (6)–(8) which
proves part (a). To prove part (b), assume the exact wave
function can be represented by two different products:

�ðr;R; tÞ ¼ �Rðr; tÞ�ðR; tÞ ¼ ~�Rðr; tÞ~�ðR; tÞ. Defining

gðR; tÞ :¼ �ðR; tÞ=~�ðR; tÞ, then j ~�Rðr; tÞj2 ¼
jgðR; tÞj2j�Rðr; tÞj2. Integrating this over r and using

Eq. (5), we get jgðR; tÞj2 ¼ 1 implying gðR; tÞ ¼ e
i�ðR;tÞ

and hence the desired result ~�Rðr; tÞ ¼ e
i�ðR;tÞ

�Rðr; tÞ.
The wave functions�Rðr; tÞ and �ðR; tÞ have a clear-cut

physical meaning: j�ðR; tÞj2 ¼ R j�ðr;R; tÞj2dr is the

probability density of finding the nuclear configuration R

at time t, and j�Rðr; tÞj2 ¼ j�ðr;R; tÞj2=j�ðR; tÞj2 is the

conditional probability of finding the electrons at r, given

that the nuclear configuration is R. At locations where

j�ðR; tÞj2 approaches zero the TDPES may show peaks,

in close analogy to the ‘‘quantum potential’’ in the
Bohmian formulation of quantum mechanics.
Equations (6)–(10) determine the exact time-dependent

molecular wave function, given an initial state. As written,
the nuclear equation is particularly appealing as a
Schrödinger equation with both scalar and vector-potential
coupling terms contributing effective forces on the nuclei
including any geometric phase effects. We call �ðR; tÞ and
AðR; tÞ the exact TDPES and time-dependent Berry con-

nection, respectively. These two quantities mediate the
coupling between the nuclear and the electronic degrees
of freedom in a formally exact way. Equations (6)–(10)
demonstrate that a Berry connection indeed appears in the
exact treatment. But does it produce a real effect or can it
be gauged away by a suitable choice of �ðR; tÞ in Eqs. (11)
and (12)? To shed some light on this question, we now
prove an alternate expression for the vector potential.
Inserting �R ¼ �=� into Eq. (10), and evaluating the

nuclear gradient on this quotient, reveals that it is the
difference of paramagnetic nuclear velocity fields derived
from the full and nuclear wave functions:

A �ðR; tÞ ¼
Imh�ðtÞjr��ðtÞir

j�ðR; tÞj2 � Imð��r��Þ
j�ðR; tÞj2 : (13)
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This equation is interesting in several respects. First,

writing �ðR; tÞ ¼ e
iSðR;tÞj�ðR; tÞj, the last term on the

right-hand side of Eq. (13) can be represented as
r�SðR; tÞ, so it can be gauged away. Consequently, any

true Berry connection (that cannot be gauged away) must
come from the first term. If the exact �ðtÞ is real-valued
(e.g., for a non-current-carrying ground state) then the first
term on the right-hand side of Eq. (13) vanishes and hence
the exact Berry connection vanishes. Second, since
Imh�ðtÞjr��ðtÞir is the true nuclear (many-body) current

density, Eq. (13) implies that the gauge-invariant current
density, Imð��r��Þ þ j�j2A�, that follows from Eq. (7)
does indeed reproduce the exact nuclear current density
[10]. Hence, the solution �ðR; tÞ of Eq. (6) is, in every

respect, the proper nuclear many-body wave function: Its
absolute-value squared gives the exact nuclear (N-body)
density while its phase yields the correct nuclear (N-body)
current density.

In the following, we first discuss some limiting cases of
the exact Eqs. (6)–(10). Fixing the gauge via
h�RðtÞj@t�RðtÞir � 0, the electronic equation reads

Ĥ elðr;R; tÞ�Rðr; tÞ ¼ i@t�Rðr; tÞ; (14)

with �R ¼ e
�i
R

t
�ðR;�Þd�

�R, while the nuclear equa-

tion retains its form Eq. (7) with �ðR; tÞ ¼
h�RðtÞjĤelðr;R; tÞj�RðtÞir. Note that the electronic

Eq. (14) and the nuclear Eq. (7) have to be propagated
simultaneously because the Hamiltonian (8) depends
�ðR; tÞ. Taking the large-nuclear-mass limit of Eq. (8),

the electronic Hamiltonian reduces to Ĥel !
M!1 ĤBO þ

V̂e
ext; i.e., the dependence of Hel on � drops out and the

electronic Eq. (14) depends on the nuclear configurationR

only parametrically. So, in this limit, Eq. (14) is propagated
in time for each fixed nuclear configuration R which is

precisely Cederbaum’s time-dependent generalization of
the BO approximation [7]. Hence, the full Eqs. (6)–(10)
can be viewed as an ‘‘exactification’’ of the intuitively
appealing procedure of [7]. If, furthermore, we treat the
nuclei classically, i.e., use the Hamiltonian (7) to generate
classical equations of motion for the nuclei, we obtain

M €R
�
¼ E� þ _R

�
� B�; (15)

where the electric and magnetic ‘‘Berry fields’’ are given

by E� ¼ r��ðR; tÞ � @A�

@t and B� ¼ r� �A�. The addi-

tional magnetic field was also found, in the appropriate
limit in an exact path-integral approach to the coupled
dynamics [11], and also in other work [12]. Being strictly
equivalent to the TDSE, the electronic and nuclear Eqs. (6)
and (7) provide a rigorous starting point suitable for mak-
ing systematic semiclassical approximations [13,14] be-
yond the purely classical limit of Eq. (15) .

We now return to the exact formulation to investigate the
TDPES for a numerically exactly solvable model: the Hþ

2

molecular ion subject to a linearly polarized laser field. By
restricting the motion of the nuclei and the electron to the
direction of the polarization axis of the laser field, the
problem can be modeled with a 1D Hamiltonian featuring
‘‘soft-Coulomb’’ interactions [15]:

ĤðtÞ ¼ � 1

M

@2

@R2
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:03þ R2
p � 1

2�e

@2

@z2
þ V̂lðz; tÞ

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz� R=2Þ2p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðzþ R=2Þ2p ; (16)

where R and z are the internuclear distance and the elec-
tronic coordinate as measured from the nuclear center-of-
mass, respectively, and the electronic reduced mass is
given by �e ¼ ð2MÞ=ð2Mþ 1Þ, M being the proton

mass. The laser field represented by V̂lðz; tÞ ¼ qezEðtÞ,
where EðtÞ denotes the electric field amplitude and the
reduced charge qe ¼ ð2Mþ 2Þ=ð2Mþ 1Þ. We consider a
	 ¼ 228 nm laser field, represented by EðtÞ ¼ E0fðtÞ�
sinð!tÞ, for two peak intensities, I1 ¼ jE0j2 ¼
1014 W=cm2 and I2 ¼ jE0j2 ¼ 2:5� 1013 W=cm2. The
envelope function fðtÞ is chosen such that the field is
linearly ramped from zero to its maximum strength at t ¼
7:6 fs and thereafter held constant.
Starting from the exact ground state as the initial con-

dition, we propagate the TDSE numerically to obtain the
full molecular wave function �ðz; R; tÞ. As there is only
one nuclear degree of freedom (after separating off the
center-of-mass motion), we can fix the gauge in Eqs. (11)
and (12) such that the vector potential (13) is always zero.
From the computed exact time-dependent molecular wave
function we compute the TDPES’s; these, along with the
corresponding nuclear density, j�ðR; tÞj2, are plotted in
Fig. 1 at six snapshots of time. The initial TDPES lies
practically on top of the ground-state BO surface, which is
plotted in all the snapshots for comparison. Figure 2 shows

the exact internuclear distance h�ðtÞjR̂j�ðtÞi, along with
the results from three approximate methods: (i) the usual
Ehrenfest approximation [i.e., Eq. (15)]. (ii) the ‘‘exact-
Ehrenfest’’ approximation, which substitutes the exact
TDPES for the Ehrenfest potential in the usual Ehrenfest
approach and, (iii) an uncorrelated approach, the time-
dependent Hartree (self-consistent field) approximation
�Hðr;R; tÞ ¼ �ðr; tÞ�ðR; tÞ, i.e., the electronic part does

not depend onR at all. Figure 2 shows that for the intensity

I1, all methods yield dissociation, while for the weaker I2,
only the exact does. We now discuss how the TDPES
contains the signature of this behavior. Note that the
laser-field does not couple directly to the nuclear relative
coordinate R, but only indirectly via the TDPES.
I1 ¼ jE0j2 ¼ 1014 W=cm2: The dissociation of the

molecule is dramatically reflected in the exact TDPES,
whose well flattens out, causing the nuclear density to spill
to larger separations. Importantly, the tail of the TDPES
alternately falls sharply and returns in correspondence with
the field, letting the density out; the TDPES is the only
potential acting on the nuclear system and transfers energy
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from the accelerated electron to the nuclei. The expectation
value of the internuclear distance in Fig. 2, demonstrates
that among all the approximate calculations employed
here, the exact-Ehrenfest is most accurate. Surprisingly, it
even does better than TD-Hartree which treats the protons
quantum mechanically, thus showing the importance of
electron-nuclear correlation.

I2 ¼ jE0j2 ¼ 2:5� 1013 W=cm2: From Fig. 2, the exact
calculation leads to dissociation, while none of the approx-
imations do, in contrast to the previous case. The TDPES
of Fig. 1, suggests that tunneling is the leading mechanism
for the dissociation: a well remains at all times that traps a
classical particle, which would oscillate inside it, as indeed
reflected in Fig. 2. (See also the solid circles in Fig. 1).
Although the tail has similar oscillations as for I1, this does
not lead to dissociation of classical nuclei due to the
barrier; the TDPES in this case transfers the field energy
to the nuclei via tunneling. Although the exact-Ehrenfest
has a larger amplitude of oscillation than the others, it
ultimately cannot tunnel through the barrier.

This example demonstrates how studying the TDPES
reveals the mechanism of dissociation. Because the
TDPES includes the electron-nuclear correlation exactly,
we believe the exact-Ehrenfest dynamics is the best one
could do within a classical treatment of the nuclei. There is
a need to go beyond classical dynamics when the disso-
ciation proceeds mainly via tunneling.

In conclusion, we have presented a rigorous factoriza-
tion of the complete molecular wave function into an
electronic contribution, �Rðr; tÞ, and a nuclear part,

�ðR; tÞ. The exact nuclear N-body density is j�ðR; tÞj2
while j�Rðr; tÞj2 represents the conditional probability of

finding the electrons at r, given the nuclear configuration

R. Their exact equations of motion are deduced. Via these

equations, the TDPES (9) and the time-dependent Berry
connection (10) are defined as rigorous concepts. We dem-
onstrated with numerical examples that the TDPES is a
powerful tool to analyze and interpret different types of
dissociation processes (direct vs tunneling). The exact
splitting of electronic and nuclear degrees of freedom
presented by Eqs. (6)–(10) lends itself as a rigorous starting
point for making approximations, especially for the sys-
tematic development of semiclassical approximations. As
a first step we have shown how the Ehrenfest equations
with Berry potential emerge from treating the nuclei clas-
sically in the large-nuclear-mass limit.
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FIG. 1 (color online). Snapshots of the TDPES (blue lines) and
nuclear density (black) at times indicated, for the Hþ

2 molecule

subject to the laser-field (see text), I1 ¼ 1014 W=cm2 (dashed
line) and I2 ¼ 2:5� 1013 W=cm2 (solid line). The circles in-
dicate the position and energy of the classical particle in the
exact-Ehrenfest calculation (I1: open, I2: solid). For reference,
the ground-state BO surface is shown as the thin red line.

FIG. 2 (color online). The internuclear separation hRiðtÞ for the
same intensities as in Fig. 1. Left panel : I1. Right panel : I2.
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