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We reanalyze the supernova data from the Union Compilation including the weak-lensing effects

caused by inhomogeneities. We compute the lensing probability distribution function for each background

solution described by the parameters �M, ��, and w in the presence of inhomogeneities, approximately

modeled with a single-mass population of halos. We then perform a likelihood analysis in the parameter

space of Friedmann-Lemaı̂tre-Robertson-Walker models and compare our results with the standard

approach. We find that the inclusion of lensing can move the best-fit model significantly towards the

cosmic concordance of the flat Lambda-Cold Dark Matter model, improving the agreement with the

constraints coming from the cosmic microwave background and baryon acoustic oscillations.
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Introduction.—In the standard approach supernova
(SNe) observations are analyzed in the framework of
homogenous Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) models. However, the Universe is known to be
inhomogenous, showing a distribution of large galaxy
clusters and filamentary structures surrounding much emp-
tier voids of size � 10–100 Mpc. A known effect of these
structures on any set of standard candles is weak gravita-
tional lensing [1]. Weak lensing can cause either bright-
ening or dimming of the source depending on whether the
matter column density along the line of sight is larger or
smaller than the FLRW value.

The fundamental quantity describing this statistical
magnification is the lensing probability distribution func-
tion (PDF). The lensing PDF is specific both to the given
FLRW model, and to the particular spectrum of inhomo-
geneities introduced. It is not currently possible to extract
the lensing PDF from the observational data and we have to
resort to theoretical models. Two possible alternatives have
been followed in the literature. A first approach (e.g.,
Ref. [2]) relates a ‘‘universal’’ form of the lensing PDF
to the variance of the convergence, which in turn is fixed by
the amplitude of the power spectrum, �8. Moreover, the
coefficients of the proposed PDF are trained on some
specific N-body simulations. A second approach (e.g.,
Ref. [3]) is to build a model for the inhomogeneous uni-
verse and directly compute the relative lensing PDF, usu-
ally through time-consuming ray-tracing techniques. The
flexibility of this method is therefore penalized by the
increased computational time.

In this work we use another approach, based on the
stochastic modeling of the inhomogeneities introduced in
Ref. [4]. This method combines the flexibility in modelling
with a fast performance in obtaining the lensing PDF. To
compute one lensing PDF, the numerical implementation

TURBOGL 0.4 [4] takes, with an ordinary desktop computer,

a time of an order of a second. This speed performance
makes it feasible to do an ab initio likelihood analysis in
the space of FLRW models endowed with inhomogene-
ities. In this Letter we will perform such an analysis for the
Union SNe Compilation [5].
Setup.—We will treat inhomogeneities as perturba-

tions over the FLRW model which is parametrized as
usual by the present Hubble expansion rate H0 ¼
100h km s�1 Mpc�1, the present matter density parameter
�M and the present dark energy density parameter�� and
a constant equation of state w. We fix the radiation density
to �R ¼ 4:2� 10�5h�2. For inhomogeneities we use a
‘‘meatball’’ model [6] consisting of randomly placed
spherical halos made of ordinary and dark matter. In prin-
ciple these halos need not be virialized, and the spherical
symmetry assumption is not very restrictive. As was ex-
plained in Ref. [4], the weak-lensing properties of a given
universe model can be described by a set of matter distri-
bution projections (z-dependent column densities) on a
small number of independent redshift slices. For such
projections any local density contrast, such as a long
filament seen edge on, looks roughly like a spherical halo.
Here we use a simple single-mass halo model which is

completely parametrized by the comoving distance be-
tween halos �c, the halo proper radius Rp and the density

profile. We choose the latter to be the Navarro-Frenk-
White profile [7] with a concentration parameter c ’ 6:7
and we assume that the halos have virialized with a contrast
of 200 at a redshift zvir, whereby (for a given zvir) the
corresponding Rp can be taken constant. The halo mass

is related to the comoving density nc � ��3
c by �c�M ¼

Mnc. For numerical values we explored the range
�c ¼ ð5:4; 9:0; 12:6Þh�1 Mpc and, correspondingly,
M ¼ ð0:44; 2:0; 5:6Þ1014h�1�MM� for zvir ¼ 0:8, and
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zvir ¼ ð0; 0:8; 1:6Þ for �c ¼ 12:6h�1 Mpc. The numerical
value of Rp depends on the background matter density at

zvir. For the � CDM model the previous range of zvir
corresponds to Rp ’ ð0:9; 0:7; 0:5Þh�1 Mpc.

Lensing.—The meatball model incorporates quantita-
tively the crucial feature that photons can travel through
voids and miss the localized overdensities. This feature is
not present, for example, in ‘‘swiss-cheese’’ models where
the bubble boundaries are designed to have compensating
overdensities. Such models have indeed been shown to
have on average little lensing effects [8,9]. The key quan-
tity in all our analysis is the lens convergence �, which in
the weak-lensing approximation is given by

�ðzsÞ ¼
Z rs

0
drGðr; rsÞ�Mðr; tðrÞÞ: (1)

Here, �Mðr; tÞ is the matter density contrast and Gðr; rsÞ ¼
3H2

0�M

2c2
fkðrÞfkðrs�rÞ

fkðrsÞ
1

aðtðrÞÞ , where the functions aðtÞ and tðrÞ
correspond to the FLRW model, rs ¼ rðzsÞ is the co-
moving position of the source at redshift zs and the inte-
gral is evaluated along the unperturbed light path. Also,

fkðrÞ ¼ sinðr ffiffiffi
k

p Þ= ffiffiffi
k

p
, r, sinhðr ffiffiffiffiffiffiffi�k

p Þ= ffiffiffiffiffiffiffi�k
p

depending on
the curvature k>;¼;<0, respectively.

Neglecting the second-order contribution of the shear,
the shift in the distance modulus caused by lensing is
expressed solely in terms of �:

�mðzÞ ¼ 5log10ð1� �ðzÞÞ: (2)

Eqs. (1) and (2) show that for a lower-than-FLRW column
density the light is demagnified (e.g., empty beam � ¼
�1), while in the opposite case it is magnified.

In Ref. [4] a fast and easy way to obtain the convergence
PDF for these meatball models was derived. In short, the
formula for the convergence Eq. (1) is replaced by a
discretized probabilistic expression:

�ðfkimgÞ ¼
XNS

i¼1

XNR

m¼1

�1imðkim � �NimÞ: (3)

Here, �1im is the convergence due to one halo, at a comov-
ing distance ri, which the photon path intercepts with an

impact parameter bm, �1im ¼ Gðri; rsÞ
RRðtiÞ
bm

2xdx
ðx2�b2mÞ1=2

�iðxÞ
��M

,

where �iðxÞ is the local halo density and ��M is the FLRW
matter density. In practice one divides the comoving dis-
tance rs to the source and the radius R of the halo into bins
of widths R � �ri � rs and �bm � R and lets the cen-
ters of these bins define the allowed values for r and b. The
quantity kim in Eq. (3) is a Poisson random variable of
parameter �Nim ¼ nc�Vim, which gives the expected
number of halos within the phase space volume �Vim ¼
2�bm�bm�ri. That is, Eq. (3) defines a convergence as a
function of a configuration fkimg of halos along an arbitrary
line of sight from the observer to the source. The lensing
PDF in the distance modulus Pwlð�m; zsÞ is then con-
structed from a large sample of random configurations

fkimg using Eqs. (2) and (3). Note that the expected con-
vergence computed from Eq. (3) is zero, consistent with
photon conservation in weak lensing, because for a Poisson
distributed variable the expected value coincides with its
parameter.
Likelihood function.—After the raw lensing PDF

Pwlð�mÞ has been computed for a given set of FLRW-
parameters and redshifts, it still has to be convolved
with the intrinsic source brightness distribution Pin:
Pð�m; zsÞ ¼

R
dyPwlðy; zsÞPinð�m� yÞ. We take Pin to

be a gaussian in the distance moduli. The actual intrinsic
distribution should be a universal function if the SN are
similar at all distances. However, following Ref. [5], we
will combine all observational (gaussian by assumption)
uncertainties in quadrature with the intrinsic distribution,
whereby Pin becomes an effective distribution specific for
each SN event PinðxÞ ! PSNðx; �iÞ. The likelihood func-
tion for a single SN observation is then

Lið�Þ ¼
Z

dyPwlðy; ziÞPSNð�mi ��� y; �iÞ; (4)

where �mi ¼ mo;i �mt;i, mo;i is the observed magnitude

and the corresponding FLRW prediction is related to the
luminosity distance dL by mt;i ¼ 5log10dLðziÞ=10 pc. The
parameter� is an unknown offset sum of the SNe absolute
magnitudes, of k corrections and other possible system-
atics. Note also that Li inherits the vanishing mean of Pwl

and that its variance is simply given by the sum of the
variances of the convolving PDFs.
We define the total likelihood function as the product of

all independent likelihood functions in the data sample,
further marginalized over �:

Lð�M;��; wÞ ¼
Z

d��iLið�Þ: (5)

Since � is degenerate with log10H0 we are effectively
marginalizing also over the expansion rate of the universe.
A replacement of Pwlðy; zÞ by a cosmology-independent
Gaussian with a variance [3] � � 0:093z, would reduce
Eq. (5) to the form used in the analysis of Ref. [5]. Typical
forms of Pwl, PSN and Lið� ¼ 0Þ have been illustrated in
Fig. 1. Also shown for later use is Gi, which is a Gaussian
with the same variance of Lið0Þ.
Results.—We run a global likelihood analysis using the

formula (5) for two different setups: first in the (�M, w)
space for flat (�k ¼ 0) wCDM models and second in the
(�M, ��) space for a nonflat �CDM model (w ¼ �1)
using the Union SNe Compilation of Ref. [5]. We show our
results in Figs. 2 and 3 as confidence level contours for
�2 ¼ �2 logL. For comparison we have performed the
analysis also using the standard PSN distribution (as done
in Ref. [5]) and the distributionGi. The idea for usingGi is
that it takes into account the cosmology-dependent extra
dispersion coming from lensing, but neglects the skewness
of the true distribution. So, the contours relative to Gi give
an idea of how much of the difference from the standard
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analysis comes from the widening of the intrinsic distribu-
tion, and how much from the skewness of the actual PDF.
As it is evident from Figs. 2 and 3, the 1� contours are
basically determined by the cosmology-dependent widen-
ing, whereas the skewness starts to be relevant between the
2 and 3� levels. We point out that our results are essen-
tially unaffected if we add a constant �sys to the �i of

Eq. (4) in order to have the same reduced �2 using Gi and
PSN.

Our most important result, clearly evident from Figs. 2
and 3, is that the inclusion of lensing effects in the like-
lihood analysis significantly moves the best-fit model, from
ð�V

M; w
VÞ ¼ ð0:38;�1:4Þ and ð�V

M;�
V
�Þ ¼ ð0:41; 0:94Þ,

towards the cosmic concordance of the flat �CDM model,
therefore improving the agreement with the constraints
coming from cosmic microwave background (CMB) and
baryon acoustic oscillations (BAO).
To further explore this behavior we studied how the new

best-fit model positions (��
M, w

�) and (��
M, �

�
�) depend

on the halos massM and the virialization redshift zvir. For a
fixed halo mass, higher values of zvir give denser halos with
smaller radius Rp and higher lensing corrections to the

likelihood. As explained before, the numerical value of Rp

depends on the background model and we use the �CDM
as a reference model to convert zvir into Rp. A fit for �c ¼
12:6h�1 Mpc then gives

ð��
M;w

�Þ ¼ ð�V
M½1� 1:5e�2:3Rp�; wV½1� 0:94e�1:7Rp�Þ

ð��
M;�

�
�Þ ¼ ð�V

M½1� 0:8e�1:2Rp�;�V
�½1� 0:54e�1:1Rp�Þ

(6)

where Rp 	 0:5 is in units of h�1 Mpc. If we fix zvir, higher

values of M (or equivalently �c) give a universe made of
larger clumps with larger voids giving therefore stronger
lensing corrections. A fit for zvir ¼ 0:8 gives

ð��
M;w

�Þ ¼ ð�V
M � 0:13M0:47; wV þ 0:45M0:33Þ

ð��
M;�

�
�Þ ¼ ð�V

M � 0:15M0:29;�V
� � 0:25M0:26Þ (7)

where M 
 1 is in units of 5:6� 1014h�1 �MM�.
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FIG. 3 (color online). 1, 2 and 3� confidence level contours on
�M and �� (i.e., allowing for nonzero curvature) for �CDM
(w ¼ �1) with halos as in Fig. 2. Note that, as also in the
previous plot, the new best-fit points lie on the 1� confidence
level contour relative to PSN. Labeling as in Fig. 2.
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FIG. 2 (color online). 1, 2, and 3� confidence level contours
on w and �M, for a flat wCDM universe with halos specified by
zvir ¼ 0:8 and �c ¼ 12:6h�1 Mpc. The results using the full
likelihood of Eq. (5) are shown as filled contours and the best-
fit model with a circle. The results using the gaussian Gi are
shown as dotted lines with a triangle, the ones using the unlensed
PSN are shown as dashed lines with a square and correspond to
the ones of Ref. [5] (without systematics).
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FIG. 1 (color online). PDFs for a SN with � ¼ 0:25 mag at
zs ¼ 1:5 in the �CDM model endowed with halos specified by
zvir ¼ 0:8 and �c ¼ 12:6h�1 Mpc. The dotted histogram repre-
sents the lensing PDF, the dashed line the SN PDF and the solid
line the full likelihood. The dotted curve is described in the text.
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The general trend favoring models with smaller �M

follows from the fact that lensing effects in general make
the fit slightly worse with than without lensing [10]. The
effect comes both from the cosmology-dependent widen-
ing and from the skewness of the distributions, and it is
obviously more pronounced for larger matter densities.
This can be seen directly from Eq. (1), where the magni-
tude of the lensing effects is explicitly seen to be propor-
tional to �M. The overall movement of the best-fit model
then follows the degeneracy of the FLRW models.

Discussion.—Our halo model was designed to capture
the most important effects of the weak gravitational lensing
by the nonlinear large-scale structures. In particular the
large voids that dominate the late-time universe were im-
posed in the model by concentrating all matter into halos.
Accordingly, we chose the halos to have the mass of a very
large cluster, i.e., of order 1014h�1M�, which then corre-
sponds to an interhalo distance of order 10h�1 Mpc.

Given this result, it is natural to ask if our toy model
could also give a reasonable approximation to the observed
power spectrum. This is not entirely obvious, because weak
lensing and power spectrum probe somewhat different
aspects of the inhomogeneities. We found that our single-
mass halo model tends to concentrate too much power onto
the interhalo distance scale, when compared to the non-
linear correction to the �CDM spectrum provided, for
example, by the halo model of Ref. [11].

It will clearly be interesting to improve the modeling of
the power spectrum by adopting a more realistic halo
distribution function fðM; zÞ, and we plan to pursue this
in future work. However, this Letter was devoted to explore
the extent to which lensing can change the supernovae
results and this is best done by adopting the simplest
single-halo model with its few parameters. In any case,
the choice of the mass function fðM; zÞ is not that simple;
even after fitting the power spectrum well, an efficient
lensing requires modelling the voids and filaments that
are described by higher order correlation terms. This can
in principle be done in the current approach by introducing
additional large-scale variations to the background density
from which standard halo functions are drawn.

Finally, given a large enough SNe data set one could in
principle measure the lensing PDF. However, to do this
properly one would have to understand the selection effects
that could, for example, cut the high magnification tail of
the PDF, sizably biasing the average convergence, vari-
ance, and skewness.

Conclusions.—We have presented a reanalysis of the
supernova data from the Union Compilation including
the lensing effects caused by inhomogeneities. Unlike in
the analysis of Refs. [5,12], where the lensing effects are
accounted for by adding in quadrature a small z-dependent
variance to the other statistical and systematic errors, we
compute the actual probability distribution functions for

each different FLRW model with a spectrum of inhomo-
geneities designed to mimic the observed large-scale struc-
tures. In particular, large voids that dominate the late-time
universe are imposed on the model by concentrating all
matter into halos of mass of order 1014h�1M�. We found
that including inhomogeneities significantly changes the
likelihood contours (the likelihood peaks, for instance,
move of around 1�) and clearly improves the concordance
of the supernova data with the CMB and the BAO, which
may be used to strengthen the case for the standard�CDM
model.
One should be reminded that our findings could change

if other effects caused by large-scale inhomogeneities are
introduced, e.g., selection or redshift effects. It also re-
mains to be seen how a more realistic inhomogeneous
distribution, providing a better fit to the matter power
spectrum, would affect these weak-lensing corrections to
the SNe contours.
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