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We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced

sensitivity to potential time variation of the fine-structure constant �. The high sensitivity is due to

coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant

differences in the configuration composition of the states involved. Configuration crossing keeps the

frequencies in the optical range despite the large ionization energies. We discuss a few promising

examples that have the largest � sensitivities seen in atomic systems.
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Introduction.—Theories that seek to unify gravity with
the other fundamental interactions suggest that temporal
variation of fundamental constants is a possibility, or even
a necessity, in an expanding universe (see, e.g. [1]). Hints
from quasar absorption spectra that the fine-structure con-
stant, � ¼ e2=@c, may have been different in the distant
past have been reported [2,3] but have not been confirmed
by other groups working on a different telescope [4]. More
recently, the methodology of [4] was questioned [5] and a
reanalysis of the same data increased the reported error
bars by a factor of 6 [6]. The observational status is there-
fore still unclear.

Atomic clocks provide a complementary method to
search for temporal variation of fundamental constants in
terrestrial laboratories [7]. Two different clocks are com-
pared over the course of several years and any discrepan-
cies are interpreted in terms of variation of �. For such a
scheme it is critical that the two clocks have different
sensitivities to any possible variation of �. The best current
laboratory limit, _�=� ¼ ð�1:6� 2:3Þ � 10�17 yr�1,
comes from comparison of Hgþ and Alþ optical clocks
over the course of a year [8]. Here the Hgþ transition is
strongly dependent on �, while theAlþ clock is practically
insensitive [7,9].

The laboratory clock limits on _� may be improved by
finding systems with enhanced sensitivity to � variation,
usually denoted q. Candidates under consideration include
the thorium ‘‘nuclear clock’’ [10], which would utilize the
�7:5 eV nuclear transition in 229Th [11]. Among other
benefits, such a clock could have many orders-of-
magnitude larger q values than the optical Hgþ clock
transition [12,13]. Optical atomic transitions with high
sensitivity can be found in Ybþ [14] and Th3þ [15].

A different kind of sensitivity comes from transitions
that have high relative sensitivity to �. For example, in the
dysprosium atom there are two different transitions that are
‘‘accidentally’’ nearly degenerate and have q values with
different signs [7,16,17]. Because the levels are so close
together the relative sensitivity, defined by K ¼ 2�q=!

where ! is the frequency of transitions between the two
levels, is extremely high (� 108). The first experiment to
utilize this transition gave fairly tight limits on � variation
[18], but the full enhancement was not realized because
one of the levels is very broad.
In this Letter we show that both kinds of sensitivity (large

q and large K) can be realized in highly ionized atomic
systems. While atomic spectroscopy in electron beam ion
traps is currently not competitive with optical frequency
standards (see, e.g., [19,20] and review [21]) the technology
continues to improve, and with the enhancements in sensi-
tivity reported here, highly charged ions may prove to be a
good system for detecting variation of �. We show, using
the Ag isoelectronic sequence as an example, why high
q values can occur in highly charged ions, and how the
tendency of such systems towards large transition frequen-
cies can be overcome. We then perform high-precision
atomic calculations for some of the most promising ions
in the sequence. In addition we identify a two-valence-
electron ion, Sm14þ, which has optical transitions that are
the most sensitive to potential variation of � ever found.
Theory.—Using a simple analytical estimate of the rela-

tivistic effects in transition frequencies, we can see that
more highly charged ions have higher sensitivity to �
variation. Note that a ratio of frequencies (the quantity
that is actually measured) does not depend on the
units one uses. In this Letter we use atomic units e ¼ me ¼
@ ¼ 1 unless otherwise stated; in these units the atomic
unit of energy is constant. Consider the relativistic correc-
tions to the central-field Schrödinger equation for a valence
electron, derived in the Pauli theory (see, e.g., [22])

� ¼ ��2
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which is accurate to order ðv=cÞ2. Here RðrÞ and E0 are
the nonrelativistic radial wave function and energy,
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respectively, VðrÞ is the potential, and X ¼ jðjþ 1Þ �
lðlþ 1Þ � sðsþ 1Þ. Near the origin V ¼ Z=r (it is
unscreened by core electrons) and the integrals (1) con-
verge as 1=r3. The radial s-wave wave function near the
origin is given in the semiclassical approximation by (see,
e.g., [22])

R2
sðrÞ � 4Z2

aZ

�3
; r &

3

2Z
; (2)

where Za is the effective charge that an external electron
‘‘sees’’ and � is the effective principal quantum number,

defined by E0 ¼ � Z2
a

2�2 . For a single-valence electron above

closed shells, Za ¼ Zi þ 1 where Zi is the ion charge,
while for hydrogenlike ions Za ¼ Z and � ¼ n, the prin-
cipal quantum number. For higher waves R2

l ðrÞ is propor-
tional to the same parameter Z2

aZ=�
3.

Noting that the integrals converge over a distance
r & 3=ð2ZÞ and neglecting the small contribution of the
E0 term in (1) (for � � Z2

a=Z
2) we obtain

�n ¼ � Z2
a

2�2

ðZ�Þ2
�

¼ �In
ðZ�Þ2

�ðjþ 1=2Þ ; (3)

where In is the ionization energy of the orbital. Numerical
verification of this formula is presented in Fig. 1. Actually,
if we neglect the E0 term, we can immediately see from (1)
that the ratio of the relativistic corrections in our ‘‘distorted
wave’’ case to the relativistic corrections in the Coulomb
case is proportional to the ratio of the squared wave func-
tions near the origin. This again leads to Eq. (3).

In principle we could restore the E0 term in (1), however
many-body corrections are much more important than
small improvements to Eq. (3). As discussed in [9], for
single-valence electrons the relativistic energy shift can be
approximately described by the equation

�n ¼ �In
ðZ�Þ2
�

�
1

jþ 1=2
� CðZ; j; lÞ

�
; (4)

where CðZ; j; lÞ depends on the atom and partial wave, but
does not depend strongly on the principal quantum number.

In practice a more sophisticated numerical treatment is
needed. We characterize the dependence of transition fre-
quencies on small changes in� by the parameter q, defined
by the formula

! ¼ !0 þ qx; (5)

where !0 is the energy at the present-day value of the
fine-structure constant �0 and x ¼ ð�=�0Þ2 � 1 �
2ð�� �0Þ=�0. Our definition of q reflects the fact that
the relativistic shift scales as �2.
We have shown that sensitivity to � variation increases

with ion charge as Z2
a ¼ ðZi þ 1Þ2. Unfortunately, the

interval between different energy levels in an ion also
increases as �Z2

a, which can quickly take the transition
frequency out of the range of lasers as Za increases.
However, the phenomena of Coulomb degeneracy and
configuration crossing can be used to combat this tendency.
In a neutral atom, an electron orbital with a larger angular
momentum is significantly higher than one with smaller
angular momentum but with the same principal quantum
number n. On the other hand, in the hydrogenlike limit
orbitals with different angular momentum but the same
principal quantum number are nearly degenerate.
Therefore somewhere in between there can be a crossing
point where two levels with different angular momentum
and principal quantum number can come close together: in
such cases the excitation energy may be within laser
range.
Consider, for example, the Ag isoelectronic sequence.

Neutral Ag (Z ¼ 47) has a single-valence electron above
closed shells. The ground state has the valence electron in
the 5s orbital, while the 4f orbital forms an excited level.
In Fig. 2 we present calculated Dirac-Fock ionization
energies of the Ag isoelectronic sequence. One can see
that as Z is increased, there is a crossing point where the
4f level becomes the ground state. At this point, around
Z ¼ 61, even though both levels have ionization energies
of �270 eV, the difference between them is very much
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FIG. 1. Ratio ��n=ðZ2�2InÞ for the 5s level along the Ag
isoelectronic sequence, calculated using the Dirac-Fock theory.
It is seen that as Z increases the ratio tends to a constant (which
is close to 1=5) in accordance with (3).
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FIG. 2. Dirac-Fock ionization energies of 5s (solid) and 4f7=2
(dashed) levels for the Ag isoelectronic sequence.
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smaller. In Table I we see that the excitation energy for ions
near the crossing point is well within the range of optical
lasers.

Higher-Z ions with many valence electrons can have
more complex behavior as ion charge is increased. For
example, in the neutral Th the 5s electron is a core electron
while the 5f electron is a valence electron; therefore the 5f
orbital is above the 5s orbital on the energy scale.
Moreover, it even lies above the 7s orbital. As seen from
the experimental spectrum of the energy levels of the
neutral (four-valence) Th, the energy of the 6d27s5f state
is above the energy of the 6d27s2 state. In the hydrogenlike
Th the energy of the 5f orbital is approximately equal to
the energy of the 5s orbital; i.e., it is significantly lower
than the energy of the 7s state. Therefore, there should be
an ion charge at which the 5f orbital ‘‘crosses’’ the 7s
orbital, while at some higher charge it crosses the 6s
orbital, etc.

Results and discussion.—To calculate energy levels we
use a combination of the configuration interaction and
many-body perturbation theory methods (CIþMBPT)
[23] which has been extensively described in previous
papers [24,25]. Once we have level energies we can obtain
� sensitivity by repeating the calculation for different
values of � and extracting q from the gradient of the
transition energies (5).

In Table I we present the results of our method for ions
of the Ag isoelectronic sequence near the 5s-4f orbital
crossing point. It is seen that even though the ionization
energies of these levels are very large (� 270 eV), which
is reflected in the very large q values, the transitions
themselves can be within the optical regime. High sensi-
tivity to variation of � can be achieved in clocks by
comparing the very sensitive 4f ! 5s transition in
Sm15þ to the 4f fine-structure transition, which in this
case would be the anchor. Alternatively, if it is convenient
to compare frequencies between ions with high accuracy,
comparison of the 4f ! 5s negative-shifting transition in
Sm15þ with one of the large positive shifting 5s ! 4f
transitions in Pm14þ or Nd13þ would allow an even higher
sensitivity to � variation.

One of the most interesting cases is Sm14þ. It has two
valence electrons above closed shells which are in the 5s
and 4f states for the low-lying configurations. The states of
all three configurations 4f5s, 4f2, and 5s2 are relatively
close to each other on the energy scale and are probably
readily accessible to modern lasers. The transitions be-
tween these states correspond to the 4f ! 5s or 5s ! 4f
single-electron transitions, which ensures strong sensitivity
to the variation of the fine-structure constant. The results of
calculations for Sm14þ are presented in Table II. We are
unaware of any experimental data for this ion; therefore,
only theoretical values are presented. Lifetimes are calcu-
lated using electric-dipole transitions only (Table III).
Consider, for example, the levels marked as GS (ground

state), A (495 cm�1) and B (28248 cm�1). Both of these
states have long lifetimes: the decay of level B is domi-
nated by the E2 transition to 3F2, which we estimate has
lifetime on the order of minutes, while the level A must
decay by M2=E3 transition and has a lifetime of many
years unless it is quenched by the hyperfine-allowed E1
transition (the odd isotopes 147Sm and 149Sm have nuclear
spin I ¼ 7=2, so there are suitable transitions). Therefore,
the transitions are sufficiently narrow to ensure accuracy
similar to that achieved in atomic clocks. If � varies in
time, states A and B will move in opposite directions. Both
of these states have some of the largest q values ever seen
in an atomic system.
The relative change of the ratio of the frequencies of two

transitions can be written as

�ð!1=!2Þ
ð!1=!2Þ

¼ ðK1 � K2Þ��� ; (6)

where K ¼ 2q=!. Substituting numbers from Table II one
obtains for levels A (495 cm�1) and B (28 248 cm�1):

KA ¼ 525; KB ¼ �8:8;
�ð!A=!BÞ
ð!A=!BÞ ¼ 534

��

�
:

(7)

TABLE I. Energies and sensitivity coefficients (q) for isoelec-
tronic sequence Nd13þ, Pm14þ, and Sm15þ (cm�1).

Ion Z Level Energy q

Nd13þ 60 5s1=2 0 0

4f5=2 59 279 106 000

4f7=2 64 654 111 000

Pm14þ 61 5s1=2 0 0

4f5=2 3973 120 000

4f7=2 10 351 126 000

Sm15þ 62 4f5=2 0 0

4f7=2 7480 7000

5s1=2 56 272 �136 000

TABLE II. Energy levels, sensitivity coefficients (q) (cm�1),
and lifetimes (�) for lower states of Sm14þ.

Configuration J Energy q �

GS 5s4f3F0 2 0 0

3 1814 987 920 s

4 7282 6350 4.2 s

A 4f23H 4 495 129 898

5 6288 135 389

6 12 067 140 213

4f23F 2 9771 131 140 16 ms

3 13 746 135 303 12 ms

4 14 377 134 910 35 ms

5s4f1F0 3 13 047 6819 50 ms

4f21G 4 21 850 141 015 11 ms

B 5s21S 0 28 248 �124 689
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This is more than 2 orders of magnitude higher relative
sensitivity than that of the Hgþ frequency standard
(K ¼ �3:19), the system in which the current strongest
constraint on the present-day time variation of � was
obtained [8]. The very high sensitivity KA comes from
large q and small !, and we should note that our theoreti-
cal transition frequencies result from a cancellation of
energy levels at the 0.01%–0.1% level, and may only be
accurate to perhaps �2000 cm�1, enough to reduce the
relative sensitivity KA considerably. On the other hand the
q values in Table II are very stable in our calculation.
Comparison of any of the lines in Table II with B will
give values of q1 � q2 � 260 000 cm�1. This represents
an absolute enhancement in� sensitivity 5 times that of the
Hgþ=Alþ clock comparison.

The lifetimes depend more strongly on the transition
frequencies than on the dipole amplitudes. On the other
hand, the accuracy of the transition frequencies may be low
since they are obtained as the difference of the two-
electron removal energies of two levels. Therefore, along
with the lifetimes of the levels, we also present the calcu-
lated values of the transition amplitudes (Table III). If
frequencies are measured, then the lifetimes can be recal-
culated using these amplitudes. Note that the amplitudes
are small. This is because they correspond to s� f single-
electron transitions, which cannot be an electric-dipole
transition. Therefore, the E1 transition amplitudes in the
two-electron states are due to configuration mixing with
suitable states, and this mixing is small.

The ideas presented in this Letter may be extended
to other isoelectronic sequences, Au, Hg, etc., which
would benefit from a larger Z2 enhancement, along with
the ðZi þ 1Þ2 enhancement we have discussed.
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