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We present a specific algorithm that generally satisfies the balance condition without imposing the

detailed balance in the Markov chain Monte Carlo. In our algorithm, the average rejection rate is

minimized, and even reduced to zero in many relevant cases. The absence of the detailed balance also

introduces a net stochastic flow in a configuration space, which further boosts up the convergence. We

demonstrate that the autocorrelation time of the Potts model becomes more than 6 times shorter than that

by the conventional Metropolis algorithm. Based on the same concept, a bounce-free worm algorithm for

generic quantum spin models is formulated as well.
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The Markov chain Monte Carlo (MCMC) method,
which is a vital tool for investigating almost all kinds of
statistical problems, especially systems with multiple de-
grees of freedom, is being applied extensively across the
various disciplines, such as statistics, economics, and bio-
informatics, not to mention physics [1–3]. In the MCMC
method for a stationary distribution, the balance condition
[BC, Eq. (2) below] and the ergodicity must be imposed;
the former ensures the invariance of a target distribution,
while the latter does the convergence to the invariant [4,5].
Although an MCMC method satisfying these two condi-
tions guarantees unbiased results in infinite time in princi-
ple, a rapid convergence, that is, a short correlation time, is
essential for the method to work in practice. The longer the
autocorrelation time is, the larger the error bar becomes. In
order to achieve weaker correlations in aMarkov sequence,
a number of variants have been invented so far, e.g., the
Swendsen-Wang algorithm [6] and the loop algorithm [7].
The extended ensemble methods, such as the multicanon-
ical method [8] and the exchange Monte Carlo method [9],
have also been proposed and applied successfully to pro-
tein folding problems, spin glasses, etc.

In most practical implementations of the MCMC
method, the detailed balance condition (DBC), the revers-
ibility, is imposed, where every elementary transition is
forced to balance with a corresponding inverse process.
Thanks to the DBC, it becomes easy to find qualified
transition probabilities. In the meantime, it has long been
considered difficult to satisfy the BC without imposing the
DBC, and attempts to reduce autocorrelations in Markov
sequences have concentrated on optimizing transition
probabilities within the DBC [10,11]. Here, we need to
be reminded that the DBC is not a necessary condition for
the invariance. The BC, which is a weaker condition than
the DBC, is mathematically sufficient [4,5]. In fact, the
DBC is often broken secretly, even though the DBC is used
apparently to define the transition probabilities. The single
spin update in a classical system is such an example. The

random update, where a spin to be flipped is chosen uni-
formly randomly among all spins, satisfies the DBC
strictly. On the other hand, the DBC is broken in the
sequential update, where spins are swept in a fixed order.
The DBC is satisfied only locally, that is, only in each spin
flip, and the BC is eventually fulfilled in one sweep [12].
In this Letter, we present a simple and versatile algo-

rithm to find a set of transition probabilities in the MCMC
method, which fulfills the BC but breaks the DBC even
locally. As the BC is a weaker condition than the DBC, the
solution space of transition probabilities is enlarged, and
rejection rates can be reduced as the result. We show that
by the present algorithm the average rejection rate is in-
deed minimized, and even reduced to zero in many relevant
cases. Furthermore, breaking the DBC introduces a net
stochastic flow in the configuration space. It will boost
up the convergence further by suppressing random walk
behavior [13–16].
In what follows, after describing our specific algorithm

for finding a rejection-minimized solution, we will dem-
onstrate its effectiveness in the single spin update of the
Potts model [17] and the worm (directed-loop) update
[18,19] of the quantum Heisenberg spin chain in a mag-
netic field. In both cases, it is established that our algorithm
boosts up the convergence significantly in comparison with
the conventional algorithms, such as the Metropolis (also
called Metropolis-Hastings) algorithm [20,21], or the heat
bath algorithm (Gibbs sampler) [22,23]. Especially, a
bounce-free (rejection-free) worm algorithm can be for-
mulated for generic quantum spin models, by which the
autocorrelation time is often reduced by orders of magni-
tude as we will see below.
We start with considering an elementary update process,

e.g., flipping a single spin in the Ising or Potts models, or
choosing an exit at an operator in the worm algorithm (see
below). Given an environmental configuration, we would
have n candidates (including the current one) for the next
configuration. The weight of each candidate configuration
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(or state) is given by wi (i ¼ 1; . . . ; n), to which the
equilibrium probability distribution is proportional.
Although in the formulation of the MCMC method, the
BC (or the DBC) is usually expressed in terms of the
weights fwig and the transition probabilities fpi!jg, it is
more convenient to introduce a quantity vi!j :¼ wipi!j,

which corresponds to the amount of (raw) stochastic flow
from state i to j. The law of probability conservation and
the BC are then expressed as

wi ¼
Xn
j¼1

vi!j 8 i (1)

wj ¼
Xn
i¼1

vi!j 8 j; (2)

respectively. The average rejection rate is written asP
ivi!i=

P
iwi. Also, it is straightforward to confirm that

fvi!jg satisfy
vi!j ¼ 1

n� 1
minðwi; wjÞ i � j (3)

for the Metropolis algorithm, and

vi!j ¼
wiwjP
n
k¼1 wk

8 i; j (4)

for the heat bath algorithm, where the detailed balance,
i.e., the absence of net stochastic flow, is manifested
by the symmetry under the interchange of the indices:
vi!j ¼ vj!i.

Our task is to find a set fvi!jg that minimizes the average

rejection rate while satisfying Eqs. (1) and (2). This proce-
dure can be understood visually asweight landfill, wherewe
move (or allocate) some amount of weight (vi!j) from state

i to j keeping the entire shape of theweight boxes intact. For
catching on this landfill picture, let us think at first the case
with n ¼ 2 as in the single spin update of the Ising model.
Figure 1 shows the landfill when the Metropolis and heat
bath algorithms [Eqs. (3) and (4)] are applied, where the
average rejection rate (/ v1!1 þ v2!2) clearly remains
finite. Indeed, for n ¼ 2 the Metropolis algorithm gives
the best solution, i.e., the minimum average rejection rate
even within the BC [see Eq. (9) below].

For n � 3, on the other hand, we can get ahead by
breaking with the DBC. In Fig. 2, we show examples of
weight landfill in the case with n ¼ 4 by using the
Metropolis and the heat bath algorithms together with a

solution that does not satisfy the DBC. The first two again
have finite rejection rates, while the last is rejection free
(i.e., vi!i ¼ 0 8 i). Although a solution is not unique
obviously, we propose the following procedure as a con-
crete algorithm to find a solution for general n. (i) Choose a
configuration with maximum weight. If two or more con-
figurations have the same maximum weight, choose one of
them. In the following, we assume w1 is the maximum
without loss of generality. The order of the remaining
weights does not matter. (ii) Allocate the maximum weight
w1 to the next box (i ¼ 2). If the weight still remains after
saturating the box, reallocate the remainder to the next
(i ¼ 3). Continue until the weight is all allocated.
(iii) Allocate the weight of the first landfilled box (w2) to
the last partially filled box in step (ii). Continue the allo-
cation likewise. (iv) Repeat step (iii) for w3; w4; . . . ; wn.
Once all the boxes with i � 2 are saturated, landfill the first
box (i ¼ 1) afterward.
In the above procedure, all the boxes are landfilled

without any space; that is, it satisfies the BC [Eq. (2)].
Since the BC is satisfied in each elementary transition, it is
fulfilled in one sweep as well. It is also clear that the second
and subsequent boxes must be already saturated when the
allocation of its own weight is initiated, since w1 is the
maximum. By this procedure, fvi!jg are determined as

vi!j ¼ maxð0;minð�ij; wi þ wj ��ij; wi; wjÞÞ; (5)

where

�ij :¼ Si � Sj�1 þ w1 1 � i; j � n; (6)

Metropolis heat bath

FIG. 1 (color online). Example of weight landfill by the
Metropolis and heat bath algorithms for n ¼ 2. The amount of
landfilled weight, vi!j, is defined by Eqs. (3) and (4), respec-

tively. The regions with thick frame denote the rejection rates.

Metropolis heat bath present

FIG. 2 (color online). Example of weight landfill by the
Metropolis, heat bath, and the proposed algorithms for n ¼ 4.
In the present algorithm, first the maximum weight (w1) is
allocated to the second box. It saturates the second box, and
the remainder is all put into the third one (first row). Next, w2 is
allocated to the partially filled box and the subsequent box
(second row). The same procedure is repeated for w3 and w4.
This proposed algorithm is rejection free, while there remain
finite rejection rates in the others as indicated by the thick
frames.
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Si :¼
Xi
k¼1

wk 1 � i � n; (7)

S0 :¼ Sn: (8)

Especially, from Eq. (5) we obtain

vi!i ¼
�
maxð0; 2w1 � SnÞ i ¼ 1
0 i � 2:

(9)

That is, a rejection-free solution can be obtained, if

w1 � Sn
2

� 1

2

Xn
k¼1

wk (10)

is satisfied. On the contrary, when inequality (10) is not
satisfied, one has to necessarily assign the maximum
weight to itself, as it is bigger than the sum of the rest.
Thus, the present solution is optimal within the BC, in the
sense that it minimizes the average rejection rate.

We close the introduction of our algorithm with a note
about the ergodicity. It is far from trivial to prove that the
present algorithm, as well as the Metropolis algorithm,
satisfies the ergodicity, since many of the transition prob-
abilities become zero exactly. In principle, however, one
can always ensure the ergodicity by combining the present
algorithm with the heat bath method. Another way to
ensure the ergodicity is randomly choosing one of the
sets of transition probabilities obtained by different landfill
order, though we have not observed any glimpse of ergo-
dicity breaking in the following simulations.

In order to assess the effectiveness of the present algo-
rithm, we investigate the autocorrelations in the ferromag-
netic q-state Potts models on the square lattice [17], which
exhibit a continuous (q � 4) or first-order (q > 4) phase
transition at T ¼ 1= lnð1þ ffiffiffi

q
p Þ. We calculate the autocor-

relation time of the square of order parameter for q ¼ 4 and
8 by several algorithms. The autocorrelation time �int is
estimated through the relation: �2 ¼ ð1þ 2�intÞ�2

0, where

�2
0 is the variance of the raw time series data and �2 is the

true variance calculated from the binned data using a bin
size much larger than the �int [1]. In Fig. 3, it is clearly seen
that our algorithm significantly boosts up the convergence
in both models in comparison with the conventional meth-
ods. In the 4-state Potts model, the autocorrelation time
becomes nearly 6.4 times shorter than that by the
Metropolis algorithm, 2.7 times than the heat bath algo-
rithm, and even 1.4 times than the locally optimal update
(LOU) by Pollet et al. [11], which is considered as one of
the best solutions within the DBC. Furthermore, the present
algorithm is increasingly advantaged as q increases.
Next, we move onto the quantum Monte Carlo methods.

The worm algorithm for quantum spin and lattice boson
models is formulated based on either the Euclidean path
integral or the high-temperature series [18,19]. One
Monte Carlo sweep of the worm algorithm consists of
the diagonal update, where operators are inserted or re-
moved without changing the shape of worldlines, and the
off-diagonal update, where the worldlines (and the type of
operators) are updated with keeping the position of opera-
tors unchanged. In the latter process, a pair of creation and
annihilation operators, which is called a worm, is inserted
on a worldline (pair creation), and one of them (called the
head) is moved stochastically until the head and the tail
destroy each other (pair annihilation). As a thorny problem,
a bounce process, where the head just backtracks and
cancels the last update, has been generally inevitable
within the DBC. Here, as an example, we consider the
S ¼ 1=2 antiferromagnetic XXZ model:

H ¼ X
hi;ji

ðSxi Sxj þ Syi S
y
j þ �SziS

z
j � CÞ � h

X
i

Szi ; (11)

where we introduce an arbitrary parameter C controlling
the ratio between the diagonal and off-diagonal weights. In
the head scattering process at an operator, only three
among four exits have a nonzero weight due to the conser-
vation of the total Sz [(a)–(c) in Fig. 4]. At the Heisenberg
point (� ¼ 1), there remain finite bounce probabilities
except at h ¼ 0 within the DBC [11,19,24]. Unfor-
tunately, the situation does not improve much even in the
BC, because the total number of candidates is too small.
However, the condition (10) provides us a clear prospect;
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FIG. 3 (color online). Autocorrelation time of the square of
order parameter near the transition temperature (T ’ 0:910 and
0.745, respectively) in the 4-state (left) and 8-state (right) Potts
models by the Metropolis (circles), heat bath (triangles), LOU
(diamonds), and present (squares) methods. The system size is
16� 16. The error bars are the same order with the point sizes.

(a) (b) (c) (d) (e)

FIG. 4 (color online). Extension of the worm-going pathway in
the S ¼ 1=2 model. Here, dashed (solid) vertical lines denote
spin up (down). The head of worm (open circle) moves on the
worldline (a), and scatters at the operator (horizontal thick line).
As candidate configurations, we introduce operator-flip updates
(d)–(e) in addition to the conventional ones (a)–(c). Note that in
(e) the position of the operator is shifted simultaneously in
contrast to the simple bounce process (a).
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by increasing the number of candidates, a bounce-free
algorithm will be realized. According to this strategy, we
introduce operator-flip updates, where sites on which an
operator acts are shifted simultaneously (Fig. 4). By the
operator flip together with the constant C chosen as

C ¼ max½14ð2�þ 3h� 1Þ; 18ð�þ 3hþ 1Þ�; (12)

we can actually eliminate the bounce process absolutely.
The autocorrelation data of the magnetization in the

Heisenberg chain (� ¼ 1) are shown in Fig. 5.
Amazingly, the bounce-free worm algorithm with the op-
erator flip is faster by about 2 orders of magnitude than the
Metropolis and the heat bath algorithms. Also in high-S
spin systems, the bounce-free worms can be constructed
by representing the partition function by decomposed
S ¼ 1=2 spins [25]. Our idea of breaking the DBC and
operator-flip updates are also applied to general bosonic
models effectively, because bosonic worms get bounce-
minimized with more candidates.

In the present study, we have developed a simple and
versatile MCMC algorithm that generally satisfies the BC
without imposing the DBC. In our algorithm, the average
rejection rate gets minimized, which reduces the autocor-
relation time significantly in comparison with the conven-
tional methods based on the DBC. We also have introduced
operator-flip updates in the worm algorithm, yielding a
bounce-free algorithm in generic spin models. The present
concept can be naturally extended to systems with con-
tinuous state variables by replacing the weight landfill
presented here with an asymmetric random cyclic shifting
in a cumulative probability distribution function. Our ap-
proach beyond the DBC can be universally applied to any
MCMC methods, even to ingenious established methods,
such as the cluster algorithms and the extended ensemble

methods, and will undoubtedly improve the convergence in
Markov sequences.
Most simulations were performed on T2K

Supercomputer at University of Tsukuba. The program
was developed based on the ALPS library [25,26]. We
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FIG. 5 (color online). Magnetic field dependence of magneti-
zation (upper) and autocorrelation time (lower) of the S ¼ 1=2
antiferromagnetic Heisenberg chain (L ¼ 64, T ¼ 1=2L). The
maximum autocorrelation time is 1:0� 103 by the worm update
with Metropolis (circles), 9:8� 102 by the worm with heat bath
(triangles), 3:3� 102 by the LOU (diamonds), an improvement
of the directed loop, and 1:7� 102 by the present algorithm
(squares). By the bounce-free worm with the operator flip, �int is
further reduced down to 8.1 (solid squares).

PRL 105, 120603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 SEPTEMBER 2010

120603-4

http://dx.doi.org/10.1214/aos/1176325750
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.70.875
http://dx.doi.org/10.1103/PhysRevLett.70.875
http://dx.doi.org/10.1103/PhysRevLett.68.9
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1007/BF00162521
http://dx.doi.org/10.1103/PhysRevE.70.056705
http://dx.doi.org/10.1063/1.477973
http://dx.doi.org/10.1063/1.477973
http://dx.doi.org/10.1103/PhysRevD.23.2901
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1214/aoap/1019487508
http://dx.doi.org/10.1214/aoap/1019487508
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1134/1.558661
http://dx.doi.org/10.1134/1.558661
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1103/PhysRevD.21.2308
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1103/PhysRevE.71.036706
http://dx.doi.org/10.1103/PhysRevE.71.036706
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304

