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We solve the Fokker-Planck equation for Brownian motion in a logarithmic potential. When the

diffusion constant is below a critical value the solution approaches an infinite covariant density. With this

non-normalizable solution we obtain the phase diagram of anomalous diffusion for this process. We

briefly discuss the physical consequences for atoms in optical lattices and charges in the vicinity of long

polyelectrolytes. Our work explains in what sense the infinite covariant density and not Boltzmann’s

equilibrium describes the long time limit of these systems.
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Brownian particles in contact with a thermal heat bath
and in the presence of a binding potential field VðxÞ attain a
steady state which is the Boltzmann equilibrium distribu-
tion WeqðxÞ ¼ N exp½�VðxÞ=kbT�. An interesting case is

the logarithmic potential: VðxÞ / �0 lnðxÞ for x � 1.
Inserting VðxÞ into the Boltzmann distribution, one finds
that the steady state solution is described by an asymptotic

power law WeqðxÞ � Nx��0=kbT . �0=kbT must be larger

than 1 for the normalization N to exist. Brownian motion
in a logarithmic potential has attracted much attention
since it describes many physical systems, ranging from
the diffusive spreading of the momentum of two level
atoms in optical lattices [1–3], single particle models for
long ranged interacting systems [4], the famous problem of
Manning condensation describing a charged particle in the
vicinity of a long and uniformly charged polymer [5], and
recently the motion of nanoparticles in an appropriately
constructed force field [6].

In this Letter we provide the long sought after [1–4,7]
long time solution of the Fokker-Planck equation describ-
ing the dynamics of Brownian particles in a logarithmic
potential. Naively one would expect that in the long time
limit the equilibrium distribution describes the statistical
properties of the system. We will show that the logarithmic
potential is much more interesting. To start with, we point
out that the second moment in the steady state hx2ieq may

diverge, namely hx2ieq ¼ 1 if 1< �0=kbT < 3. However,

if we view the problem of Brownian diffusion in a loga-
rithmic potential dynamically, starting with a compact
initial state, we immediately realize that the process cannot
be faster than diffusion; namely hx2i � 2Dt whereD is the
diffusion constant. In this sense the steady state solution,
e.g., the Boltzmann distribution, for a particle in a loga-
rithmic potential, does not describe well the statistical
properties of the problem, for any long though finite
time. Thus we must consider the time dependent solution.

Here we show that Brownian particles in a logarithmic
potential are characterized by an infinite covariant density.
This density is not normalizable (hence the term infinite);
however as we show, it does describe the anomalous

behavior of the system. For example it can be used to
obtain correctly the moments of the process, while the
normalizable Boltzmann distribution completely fails to
do so. Similar infinite invariant densities were used by
mathematicians to describe low dimensional deterministic
dynamical models [8], while our work implies that these
type of densities arise naturally in several physical sys-
tems. We examine these issues first in the context of
diffusive spreading of momenta for atoms in an optical
lattice, since this system is an excellent candidate to ex-
perimentally test our predictions. Our results with small
notational changes describe a wide class of Brownian
trajectories in the presence of a logarithmic potential, as
discussed below.
Fokker-Planck equation.—The equation for the proba-

bility density function (PDF) Wðp; tÞ of the momentum p
of an atom in an optical trap is modeled within the semi-
classical approximation according to [1–3]

@W

@t
¼ D

@2

@p2
W � @

@p
FðpÞW: (1)

The cooling force

FðpÞ ¼ � p

1þ p2
(2)

restores the momentum to its minimum while D describes
stochastic momentum fluctuations which lead to heating.
From the Sisyphus effect, interaction of atoms with the
counter propagating laser beams means that D is deter-
mined by the depth of the optical potential [1–3], which in
turn leads to experimental control of the unusual statistical
properties of this system [9]. For p � 1 the force
is harmonic, FðpÞ � �p, while in the opposite limit,
p � 1, FðpÞ � �1=p. The effective potential VðpÞ ¼
�R

p FðpÞdp ¼ ð1=2Þ lnð1þ p2Þ is symmetric VðpÞ ¼
Vð�pÞ and VðpÞ � lnðpÞ when p � 1 (we use a dimen-
sionless representation for p [3]). The minima of the
effective potential VðpÞ is at p ¼ 0, the ideal cooling limit,
which is not achieved due to the fluctuations.
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Steady state.—The steady state solution of Wðp; tÞ is
found in the usual way: imposing @Weq=@t ¼ 0 from

Eqs. (1) and (2) we have Weq / exp½�VðpÞ=D�. This

solution is normalizable only if D< 1 in which case [3,9]

WeqðpÞ ¼ N ð1þ p2Þ�1=ð2DÞ; (3)

where N ¼ �ð 1
2DÞ=½

ffiffiffiffi
�

p
�ð1�D

2D Þ� is the normalization con-

stant. This steady state solution was observed in optical
lattice experiments [9] where it was shown that this be-
havior is tunable, namely, one may control D to obtain
different steady state solutions. Notice that Eq. (3) exhibits
a power law decay for large pwhich is clearly related to the
logarithmic potential under investigation. From Eq. (3)
we have

hp2ieq ¼
� D
1�3D 0<D< 1=3
1 1=3<D< 1:

(4)

The behavior hp2ieq ¼ 1 implies an averaged kinetic en-

ergy which is infinite [10]; as we now show, this divergence
is avoided by considering the time dependent solution.

Bounds on hp2i.—To start our analysis we consider the
dynamics of hp2i. Multiplying the Fokker-Planck Eq. (1)
with p2 and integrating over pwe have, after integrating by
parts and using the natural boundary condition thatWðp; tÞ
and its derivative at p ! �1 are zero,

@

@t
hp2i ¼ 2D� 2

�
p2

1þ p2

�
; (5)

where h. . .i ¼ R1
�1 . . .Wðp; tÞdp. Obviously, we have

0 � hp2=ð1þ p2Þi � 1, hence 2D� 2 � @hp2i
@t � 2D, and

therefore if we start with Wðp; 0Þ ¼ �ðpÞ
ð2D� 2Þt � hp2i � 2Dt: (6)

The upper bound clearly implies that hp2i increases at most
linearly as diffusion persists. The lower bound is useful
whenD> 1 since then it shows that hp2i / t. We now turn
to analyze the casesD< 1 andD> 1 separately since they
exhibit very different behaviors.

The caseD< 1.—We first consider the more interesting
case D< 1 where a normalizable steady state Eq. (3)
exists. For large but finite times the latter describes well
the central part ofWðp; tÞ but not its tails which govern the
growth of hp2i when 1=3<D< 1 (for D< 1=3 higher
order moments diverge and the essential problem remains).
We employ the scaling ansatz [11]

Wðp; tÞ � t�fðp= ffiffi
t

p Þ (7)

which holds for large p and long t and the exponent � will
be soon determined. Let us introduce the scaling variable

z ¼ p=t1=2. This is the typical scaling of Brownian motion,
which indicates that for large p diffusion is in control;
however, as we now show, fðzÞ is far from a Gaussian so
the process is clearly not simple diffusion. Inserting Eq. (7)
in the Fokker-Planck Eq. (1) and using p � 1 we find

D
d2f

dz2
þ

�
1

z
þ z

2

�
df

dz
�

�
�þ 1

z2

�
f ¼ 0: (8)

For small z we get f� z�1=D or f� z; the latter is rejected
since fðzÞ cannot increase with z. To find � we require that
the small z solution matches the steady state, since the
latter describes well the density in the center. Using

Eq. (7) with f / z�1=D we have Wðp; tÞ / t�þ1=ð2DÞp�1=D

which is to be matched with the steady state solution

Eq. (3) Weq / p�1=D. Hence; � ¼ � 1
2D . Then, one solu-

tion of Eq. (8) is immediate: fðzÞ ¼ Az�1=D. While this
solution has the correct small z behavior it does not decay
quickly enough at large z [12], so we need the second
solution:

fðzÞ ¼ Az�1=D
Z 1

z
s1=De�s2=4Dds: (9)

The constant A is found by matching the small z solution
Eq. (9) to the steady state solution Eq. (3). Solving the
integral in Eq. (9) we reach our first main result

fðzÞ ¼ N z�1=D

�ð1þD
2D Þ �

�
1þD

2D
;
z2

4D

�
; (10)

where �ða; xÞ ¼ R1
x e�ssa�1ds is the incomplete Gamma

function [13] and �ðaÞ is the Gamma function. For small
and large z we find

fðzÞ �
�N z�1=D z � 2

ffiffiffiffi
D

p
N ð4DÞð1=2Þ�ð1=2DÞ

�ð1þD
2D Þ z�1e�z2=4D z � 2

ffiffiffiffi
D

p
: (11)

Equation (10) is non-normalizable since according to

Eq. (11) fðzÞ � z�1=D and hence
R1
0 fðzÞdz ¼ 1.

Infinite covariant density.—We call the non-
normalizable solution Eq. (10) an infinite covariant den-
sity. In Fig. 1 comparison is made between our analytical
solution Eq. (10) and numerical solutions of the Fokker-
Planck equation. As time increases, the solution in the
scaled coordinate approaches the infinite covariant density
Eq. (10), which describes the asymptotic scaling solution
of the probability density. For any finite long time t,
expected deviations (which we soon characterize via a
uniform approximation) from the infinite covariant solu-
tion are found for small values of z (see Fig. 1). These
deviations become negligible at t ! 1; however they are
important since they indicate that the pathological diver-
gence of fðzÞ on the origin is slowly approached but never
actually reached; namely, the solution is of course normal-
izable for finite measurement times.
The variance hp2i.—Even though the solution Eq. (10)

is non-normalizable, it can be used to find the second
moment hp2i. To see this we introduce a cutoff pc above
which our solution Eq. (10) is valid. The variance is
calculated using the symmetry Wðp; tÞ ¼ Wð�p; tÞ
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hp2i ¼ 2
Z pc

0
p2Wðp; tÞdpþ 2

Z 1

pc

p2Wðp; tÞdp: (12)

The first term in Eq. (12) is a constant and can be neglected
once the second term is shown to increase with time.
Inserting the infinite covariant solution Eq. (10) in the
second term of Eq. (12)

hp2i � 2tð3=2Þ�ð1=2DÞ Z 1

pc=
ffiffi
t

p z2fðzÞdz (13)

for 1=3<D< 1. The lower limit in the integral pc=t
1=2

goes to zero when t ! 1 and the diffusion is anomalous

hp2i � 2tð3=2Þ�ð1=2DÞ Z 1

0
z2fðzÞdz: (14)

Thus the infinite covariant density yields the anomalous

diffusion in this model. While fðzÞ � z�1=D for small z and
is hence non-normalizable, the integral in Eq. (14) is finite:
the z2 cures the pathology of the density at the origin.
Solving the integral in Eq. (14) as well as the diffusive
regime soon to be discussed we obtain

hp2i �
8><
>:

D
1�3D D< 1

3

16N
21=D�ð1þD

2D Þ
D

3D�1 ðDtÞð3=2Þ�ð1=2DÞ 1
3 <D< 1

2ðD� 1Þt 1<D:

(15)

For D< 1=3, hp2i is time independent and is determined
by the steady state solution Eq. (3). For the intermediate
regime 1=3<D< 1 the diffusion is anomalous, while for
D> 1 it is normal in agreement with the bounds, Eq. (6).

In Fig. 2, numerical solutions for hp2i versus time exhibit
convergence towards these types of behavior.
A simple argument for the anomalous scaling in

Eq. (15), for 1=3<D< 1, is found by noticing that the
steady state solution Eq. (3) describes the center part of the

PDF with a diffusion determined cutoff, jpj< ffiffiffiffiffiffi
Dt

p
:

hp2i /
Z ffiffiffiffi

Dt
p

� ffiffiffiffi
Dt

p p2WeqðpÞdp / 2
Z ffiffi

t
p
p2�1=Ddp

/ tð3=2Þ�ð1=2DÞ: (16)

To characterize the distribution of p and to find hp2i
exactly, we need the infinite covariant density which can-
not be obtained by similar simple scaling arguments.
A uniform approximation is now presented which works

well for long though finite times and for all p. Noticing that
the solution for not too large p is given by the steady state,
while the tails of Wðp; tÞ are described by the scaling
solution we can match both regimes to find

Wðp; tÞ ’ N ð1þ p2Þ�ð1=2DÞ �ð1þD
2D ; p2

4DtÞ
�ð1þD

2D Þ : (17)

As shown in Fig. 1 this uniform approximation perfectly
agrees with numerical integration already for moderately
long time. Equation (17) does not diverge at the origin, still
as demonstrated in Fig. 1 the solution approaches the
infinite covariant density.
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FIG. 2 (color online). In the long time limit the variance hp2i
exhibits three behaviors: normal diffusion if D> 1, anomalous
diffusion hp2i � t3=2�1=ð2DÞ if 1=3<D< 1 and steady state be-
havior hp2i ! const for D< 1=3. For short times hp2i � 2Dt
since then the influence of the force field is negligible (initially
particles are at the origin). In the inset we show jRatio� 1j versus
t where Ratio is the ratio of hp2i obtained from numerical
integration to that given by the asymptotic formula, Eq. (15). A
theory (to be published) shows that jRatio� 1j / t��ðDÞ with
�ðDÞ ¼ minðjD� 1j=2D; 1=2Þ. The inset illustrates that as time
increases simulations converge to our asymptotic theory, and that
the convergence is slow, e.g., �ð32Þ ¼ 1=6.
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FIG. 1 (color online). We show that fðzÞ ¼ t1=ð2DÞWðp; tÞ
(with z ¼ p=t1=2) obtained from numerical integration of the
Fokker-Planck equation converges towards the infinite covariant
density [solid blue t ¼ 1 curve Eq. (10)]. Thus the asymptotic
behavior of the system is not globally determined by the standard
steady state solution. Notice that for t ! 1, fðzÞ � z�1=D for
small z and hence in the long time limit the infinite covariant
density fðzÞ is non-normalizable. For finite times simulations
(symbols) and the uniform approximation Eq. (17) (curves)
perfectly match. Here D ¼ 1=2 and initially Wðp; t ¼ 0Þ is a
delta function centered on the origin.
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The case D> 1.—In analogy to the previous case, we

set Wðp; tÞ ¼ t�1=2fðzÞ where, again z ¼ p=
ffiffi
t

p
. We find

fðzÞ ¼ z�1=Deð�z2Þ=4D

ð4DÞ1���ð1� �Þ ; (18)

where � ¼ ð1þDÞ=ð2DÞ. Roughly speaking the potential
is responsible for the accumulation of particles close to the

origin which yields the z�1=D factor in Eq. (18). Although
the solution Eq. (18) exhibits a divergence at z ¼ 0, since
now D> 1 the solution is normalizable and in this regime
we do not find an infinite covariant density.

The role of infinite invariant densities and non-
normalizable states in physics is now briefly discussed.
Clearly, for particles diffusing freely in space the corre-
sponding steady state is non-normalizable. While the mo-
tion of particles in a logarithmic potential shares some
features with free particles, e.g., unbounded growth of
hp2ðtÞi, the logarithmic potential supports a normalized
steady state (when D< 1). Thus Brownian motion in a
logarithmic potential is unique: a normalized steady state
exists besides an infinite covariant density and both are
needed to describe the long time behavior of this system.
Mathematicians have investigated infinite invariant mea-
sures in the context of ergodic theory for many years [8].
More recently, an infinite invariant density [14] was used
to calculate subexponential separation of trajectories and
entropy production in the well known intermittent
Pomeau-Manneville map. In the context of a model of
an electron glass, the distribution of eigenvalues of a
relaxation matrix was found to be non-normalizable which
yields slow relaxations [15]. These routes to infinite den-
sities are all found in systems which exhibit anomalous
diffusion [16–18], a connection which demands further
investigation.

Thermal systems.—As noted in the introduction, we may
consider over-damped Brownian particles coupled to a
thermal heat bath with temperature T and get the same
results as for the optical lattice. More precisely,
consider overdamped Brownian motion in the potential
�0 lnða2 þ x2Þ=2 and diffusion constant �D (units m2=s).
From the fluctuation dissipation theorem we have

@Pð~x;~tÞ
@~t

¼
�
kbT

�0

@2

@~x2
þ @

@~x

~x

1þ ~x2

�
Pð~x;~tÞ (19)

which after an obvious change of notation is the same as
Eq. (1). In Eq. (19) dimensionless time ~t ¼ �0 �Dt=a2kbT
and space ~x ¼ x=a are used. More importantly our
results are not limited to one dimension. Indeed an infinite
wire of radius b, with uniform charge density per unit
length � yields the logarithmic potential VðrÞ ¼ �lnðrÞ
for r > b > 0. Such a potential was considered by
Manning [5] in the context of ion condensation on a long
polyelectrolyte. It is not difficult to show that the radial

Fokker-Planck equation yields behavior similar to ours. We
do note that the limit b ! 0 gives different behavior.
Summary.—Steady state solutions are commonly as-

sumed to describe the long time limit of dynamics of
many thermal and nonthermal systems. We find that for
the widely applicable process of Brownian motion in
a logarithmic potential, the infinite covariant density
Eq. (10) is needed to characterize the long time solution.
Thus, while Boltzmann’s equilibrium concepts are impor-
tant they are clearly not sufficient in this case.
Work is supported by the Israel Science Foundation.

E. B. thanks E. Lutz and F. Renzoni for useful discussion
on the physics of optical lattices.

[1] Y. Castin, J. Dalibard, and C. Cohen-Tannoudji, in Light
Induced Kinetic Effects on Atoms, Ions and Molecules,
edited by L. Moi et al. (ETS Editrice, Pisa, 1991).

[2] S. Marksteiner, K. Ellinger, and P. Zoller, Phys. Rev. A 53,
3409 (1996).

[3] E. Lutz, Phys. Rev. Lett. 93, 190602 (2004).
[4] F. Bouchet and T. Dauxois, Phys. Rev. E 72, 045103(R)

(2005); J. Phys. Conf. Ser. 7, 34 (2005); P. H. Chavanis
and M. Lemou, Eur. Phys. J. B 59, 217 (2007).

[5] G. S. Manning, J. Chem. Phys. 51, 924 (1969).
[6] A. E. Cohen, Phys. Rev. Lett. 94, 118102 (2005).
[7] P. H. Chavanis and M. Lemou, Phys. Rev. E 72, 061106

(2005).
[8] J. Aaronson, An Introduction to Infinite Ergodic Theory

(American Mathematical Society, Providence, 1997).
[9] P. Douglas, S. Bergamini, and F. Renzoni, Phys. Rev. Lett.

96, 110601 (2006).
[10] H. Katori, S. Schlipf, and H. Walther, Phys. Rev. Lett. 79,

2221 (1997) found the fingerprint of this divergence as a
dramatic increase of energy when the depth of the optical
potential was carefully tuned.

[11] This scaling ansatz can be derived from the formal solu-
tion of the Fokker-Planck equation (in preparation). A
more general scaling ansatz than Eq. (7) is Wðp; tÞ �
t�fðp=t�Þ. Inserting it in the Fokker-Planck equation,
using p � 1, one finds for fðzÞ with z ¼ p=t�: ð�f�
�zf0Þ=t ¼ ðDf00 � f=z2 þ f0=zÞ=t2� thus a scaling solu-
tion is found only if � ¼ 1=2.

[12] Since for large z we have cutoffs on the power law decay,
in agreement with Eq. (6).

[13] M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions (Dover, New York, 1972).

[14] N. Korabel and E. Barkai, Phys. Rev. Lett. 102, 050601
(2009).

[15] A. Amir, Y. Oreg, and Y. Imry, Phys. Rev. Lett. 103,
126403 (2009).
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