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The concepts of separability, entanglement, spin squeezing, and the Heisenberg limit are central in the

theory of quantum-enhanced metrology. In the current literature, these are well established only in the

case of linear interferometers operating with input quantum states of a known fixed number of particles.

This manuscript generalizes these concepts and extends the quantum phase estimation theory by taking

into account classical and quantum fluctuations of the particle number. Our analysis concerns most of the

current experiments on precision measurements where the number of particles is known only on average.
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Introduction.—After the pioneer works of the 1980s and
early 1990s [1–4], the field of quantum-enhanced metrol-
ogy is witnessing a revival of interest due to the possible
implications on fundamental questions of quantum infor-
mation and technological applications. Recent theoretical
analyses are mainly focusing on the interplay between
spin squeezing, entanglement and phase sensitivity [5,6],
the set of fundamental sensitivity bounds [7–9], and the
quest for optimal phase estimation protocols [10,11]. This
activity has come along with breakthrough experimental
investigations with photons [12], ions [13], cold atoms
[14], and Bose-Einstein condensates (BECs) [15,16]. The
interplay between theory and experiments plays a crucial
role for the development of the field. It should be noticed,
however, that while the theoretical investigations have
been developed in the context of systems having a fixed,
known, number of particles, most experiments have been
performed with a fluctuating number of particles. The
consequences of classical and quantum fluctuations have
been generally disregarded.

The goal of this manuscript is to extend along this
direction the quantum metrology theory, and, in particular,
to discuss the relation between separability, entanglement,
spin squeezing, and sub-shot-noise (SSN) sensitivity, and
to settle the concept of the Heisenberg limit. In this frame-
work, we recognize as entangled, for instance, the state
suggested by Caves in 1981 in the context of Mach-
Zehnder interferometry [1], which provided the first
proposal for sub-shot-noise phase estimation.

Separability and entanglement.—The fluctuation of the
total number of particles can have a classical and/or
quantum nature. It is generally believed that quantum
coherences between states of different numbers of particles
do not play any observable role because of the existence
of superselection rules (SSR) for the total number of
particles [17–19]. Therefore, the most general states can
be written as

�̂ inc ¼
Xþ1

N¼0

QN�̂
ðNÞ; (1)

where �̂ðNÞ is a state of N particles. We extend the usual
definition of separability of states of N particles [20] by
considering such incoherent mixtures as separable if they
can be written as

�̂ sep ¼
Xþ1

N¼0

QN�̂
ðNÞ
sep ; (2)

where �̂ðNÞ
sep ¼ P

kPk;Nj�ð1Þ
k;Nih�ð1Þ

k;Nj � � � � � j�ðNÞ
k;Nih�ðNÞ

k;Nj,
fQNg and fPk;Ng are probability distributions and j�ðjÞ

k;Ni
is a two-mode pure state of a single particle [21]. The
existence of a SSR is the consequence of the lack of a
suitable phase reference frame (RF) [19]. However, the
possibility that a suitable RF can be established in principle
cannot be excluded [19]. If SSRs are lifted, then states �̂coh

containing coherent superpositions of different numbers of
particles would become physically relevant. These will be
called separable if they are separable in every fixed-N
subspace, i.e., if the state �̂red �

P
N1N�̂coh1N without

such coherences is of the form of Eq. (2) [21]. States which
are not separable according to this definition are entangled
[22]. In this manuscript, it will be shown that entanglement
is a necessary resource for sub-shot-noise sensitivity in
linear interferometers.
Phase sensitivity with a linear interferometer.—We con-

sider a linear two-mode interferometer where the density

matrix �̂ evolves as �̂ð�Þ ¼ e�i�Ĵ ~n �̂eþi�Ĵ ~n , where � is a real
number, ~n is an arbitrary direction in the three-dimensional

space, and Ĵ ~n ¼ ~̂J � ~n is a collective spin operator. For a

nonfixed number of particles ~̂J is defined as ~̂J ¼ �þ1
N¼1

~̂J
ðNÞ

,

where ~̂J
ðNÞ ¼ 1

2

P
N
l¼1

~̂�ðlÞ
and ~̂�ðiÞ

is the vector of Pauli

matrices acting on the lth particle [24]. Note that lin-
ear interferometers preserve the number of particles,
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½Ĵ ~n; N̂� ¼ 0. The goal is to estimate the parameter�with the
maximum possible sensitivity ��. The quantum Cramer-
Rao theorem ensures that for arbitrary, unbiased, phase
estimation protocols, the phase sensitivity is bounded by
[25,26]

��QCR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFQ½Ĵ ~n; �̂�

q : (3)

Here m is the number of independent measurements done

with identical input states �̂ and FQ½Ĵ ~n; �̂� is the quantum
Fisher information (QFI) [26]. Equation (3) is a bound on
�� given the state �̂ and the number ofmeasurementsm and
can be saturated in the central limit.

In the following, we set the fundamental sensitivity
bounds of the phase estimation problem by taking, as a

constraint, the average total number of particles, �Ntot ¼
mhN̂i, without fixing m or hN̂i separately. This correctly
accounts for the finite available resources [10,27].
Averages are computed with respect to the input state of
the interferometer.

Shot-noise limit.—We define the shot-noise limit as the
maximal phase sensitivity attainable with separable states.

For separable incoherent mixtures, Eq. (2), FQ½�̂sep; Ĵ ~n� ¼P
NQNFQ½�̂ðNÞ

sep ; Ĵ
ðNÞ
~n � � P

NQNN ¼ hN̂i. The first equality
is due to the block-diagonal form of Ĵ ~n and �̂sep [28] and

the second inequality was proved in Ref. [6]. By using this
result and Eq. (3), the shot-noise limit is thus given by

��SN ¼ 1ffiffiffiffiffiffiffiffi
�Ntot

p ; (4)

which agrees with the common definition of the shot noise
or standard quantum limit. As shown in Appendix A,
Eq. (4) holds also when considering separable states with
coherences. This brings us to the following results.

Entanglement and sub-shot-noise sensitivity.—An arbi-
trary state with a nonfixed number of particles is entangled
if it fulfills the inequality

�2 � hN̂i
FQ½Ĵ ~n; �̂�

< 1; (5)

for some direction ~n. States satisfying Eq. (5) are useful in
a linear interferometer implemented by the transformation

Ĵ ~n, since, according to Eq. (3), they provide a sub-shot-
noise phase sensitivity. We further introduce the spin-
squeezing condition

�2 � hN̂ið�Ĵ ~n3Þ2
hĴ ~n1i2 þ hĴ ~n2i2

< 1; (6)

where the vectors ~n1, ~n2, and ~n3 define a right-handed
coordinate system [29]. In Appendix B, we prove that
�2 � �2 holds. Hence, spin-squeezed states (� < 1) are
entangled and useful for SSN interferometry. Equations (5)
and (6) generalize the conditions for entanglement and
SSN discussed in [3,5,6] to states of a nonfixed number
of particles and only require the replacement of N with

hN̂i. This result has been previously used without justifi-
cation in several experimental works.
The Heisenberg limit.—While it is well known that the

shot-noise limit Eq. (4) can be overcome, finding
the Heisenberg limit (HL), i.e., the ultimate scaling of
the phase sensitivity imposed by quantum mechanics for
states with nonfixed N, has generated a vivid debate
[8,27,30–32]. For instance, it has been suggested that

��� 1=hN̂i is the fundamental sensitivity bound [30].
Recently it was argued that the HL is given by �� ¼
1=

ffiffiffiffiffiffiffiffiffiffi
hN̂2i

q
[8]. Not only does this limit overcome the bound

�� ¼ 1=hN̂i, but also, since the quantity hN̂2i can grow

arbitrarily fast with hN̂i, the phase sensitivity can be arbi-
trarily high when considering wildly fluctuating number
distributions [33].
The definition of the HL depends on the specific con-

straints imposed on the resources. In the presence of the

SSR, and by taking hN̂i, hN̂2i and m as constraints, the
phase sensitivity is bounded by

�� 	 max

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mhN̂2i
q ;

1

mhN̂i
�
: (7)

The first bound is derived from Eq. (3) by noticing

that, for incoherent mixtures (1), FQ½�̂inc; Ĵ ~n� ¼P
NQNFQ½�̂ðNÞ; ĴðNÞ

~n � � P
NQNN

2 ¼ hN̂2i. It agrees with

the bound of [8], except for the factor m, accounting for
repeated independent measurements. Note that in the cen-
tral limit, the bound scales as 1=

ffiffiffiffi
m

p
. The second bound is

proven in Appendix C. When the number of particles is fixed
and equal to N, Eq. (7) recovers the definition of the HL
�� ¼ 1=

ffiffiffiffi
m

p
N discussed in [7] which takes, as constraints,

N and m, separately. Note, however, that from this limit one

does not obtain Eq. (7) by naively replacing N ! hN̂i.
Here, we define the HL as the maximum phase sensi-

tivity attainable with fixed �Ntot. If coherences can neither
be generated nor measured, as in current experimental
interferometric protocols because of the SSR, the HL is

��HL ¼ 1
�Ntot

: (8)

If the state contains coherences but only POVMs without
number coherences are applied, the HL is still given by
Eq. (8) cf. Appendix C. In particular, this is true for the
Mach-Zehnder interferometer, even if only the relative
number of particles is measured or the parity at one exit
port. The latter measurement was considered in Ref. [31].
By adapting the proof in Appendix C it can also be shown
that the HL Eq. (8) holds for incoherent mixtures even if
POVMs with coherences are available.
If the state contains coherences and POVMs with coher-

ences are used, then Eq. (8) is valid in the central limit only
[34]. Outside the central limit the bound

�� 	 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mhN̂2i

q (9)
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holds, as shown in Appendix C. However, there are argu-
ments suggesting that the HL may be given by Eq. (8) also
in this case [27,35].

Examples.—We consider a Mach-Zehnder interferome-
ter, corresponding to a collective rotation around the y axis,
i.e., ~n ¼ ŷ, with a coherent state j�ia in the input mode a
and a squeezed state j�ib in the input b as suggested by
Caves [1,10,36]. Here � ¼ j�jei�� and � ¼ rei�� . When
fixing the relative phase 2�� ¼ �, Eq. (5) gives

�2 ¼ j�j2 þ sinh2r

j�j2e2r þ sinh2r
: (10)

For r ¼ 0 we have a coherent state entering one of the two
ports and vacuum the other port. We obtain �2 ¼ 1 and
hence shot noise, as expected. In contrast, we obtain
�2 < 1 when r > 0 and j�j2 � 0. The state is entangled
and, for relatively small values of r, it is also spin squeezed,
according to the definition Eq. (6). A direct calculation for
~n3 ¼ x̂ gives

�2 ¼ ðj�j2 þ sinh2rÞðj�j2e�2r þ sinh2rÞ
ðj�j2 � sinh2rÞ2 : (11)

In the limit j�j2 
 sinh2r we have that �2 ¼ e�2r < 1
for r > 0 (and j�j � 0). Spin squeezing is lost for
j�j2 � sinh2r, even though the state remains entangled.
Equations (10) and (11) hold even for the state �red ¼P

N1Nj�; �ih�; �j1N obtained in the presence of the SSR
[19,37]. We finally notice that the state j�i � j�i reaches
the HL ��� 1= �Ntot when j�j2 � sinh2r [10].

Conclusions.—In this Letter we have extended the quan-
tum phase estimation theory to the case of states with
fluctuating number of particles. In particular, we have
discussed entanglement and spin squeezing and provided
the class of entangled states useful for sub-shot-noise
sensitivity. The Heisenberg limit has been defined by tak-
ing into account the finite available resources. Our results
are relevant for most current experiments on the creation,
detection, and application of entangled states with a
fluctuating number of particles for quantum metrology.

We thank J. I. Cirac, K. Mølmer, A. S. Sørensen, and
T. Rudolph for stimulating discussions.

Appendix A: Shot-noise limit.—Herewedemonstrate that

FQð�̂csÞ � hN̂i for states of the form �̂cs ¼
P

kpkjc ðkÞ
cs i�

hc ðkÞ
cs j, which contain coherences between different

numbers of particles and are separable in every fixed-N

subspace. We obtain FQð�̂csÞ � max4
P

kpkð�Ĵ ~nÞ2jc ðkÞ
cs i

�
4
P

kpk

P
NQ

ðkÞ
N maxh½ĴðNÞ

~n �2ijc ðN;kÞ
cs i �

P
kpk

P
NQ

ðkÞ
N N¼hN̂i,

by using the convexity of the quantum Fisher information

[38]. We expanded jc ðkÞ
cs i ¼ P

N

ffiffiffiffiffiffiffiffiffi
QðkÞ

N

q
jc ðN;kÞ

cs i and used

that for pure separable states h½ĴðNÞ
vec�2ijc ðNÞ

sep i � N
4 [6]. By

inserting FQð�̂csÞ � hN̂i into Eq. (3), we recover Eq. (4).
Appendix B: Spin-squeezing inequality.—We consider,

without loss of generality, a coordinate system such that

hĴ ~n2i ¼ 0. From the inequalities FQ½�̂; Ĵ ~n� 	 FÊð"Þ½�̂ð�Þ�

[26] and FÊð"Þ½�̂ð�Þ� 	 1
ð�ÂÞ2 ðdhÂid� Þ2 (obtained by extending

the proof in [39] to the case of nonfixed number of par-

ticles), it follows that �2 � hN̂ið�ÂÞ2=ðdhÂi=d�Þ2. By

choosing ~n ¼ ~n2, Â ¼ Ĵ ~n3 and using the commutation

relations of the Ĵ ~ni operators [29], we obtain @
@� hĴ ~n3i ¼

iTr½Ĵ ~n3½Ĵ ~n2 ; �̂ð�Þ�� ¼ hĴ ~n1i. Hence �2 � ð�Ĵ ~n3
Þ2

hĴ ~n1
i2 ¼ �2.

Appendix C: Heisenberg limit.—In the presence of the
SSR, only POVMs without coherences are available. A
POVM is of this form if we can write its elements as

Êð	Þ ¼ P
ðN;MÞ2Ið	ÞÊN;M, where

P
MÊN;M ¼ 1N (M is a

degree of freedom in each N subspace), and Ið	Þ are all
pairs (N,M) leading to the same 	 (	 could be the number
of particles at one port of a Mach-Zehnder interferometer,
for instance). For m ¼ 1, the conditional probabilities
are Pð	Þ ¼ P

ðN;MÞ2Ið	ÞPðN;Mj�Þ ¼ P
ðN;MÞ2Ið	ÞQNPðM

j�; NÞ, where PðMj�; NÞ ¼ Tr½ÊN;Me
i�Ĵ ~n �̂ðNÞe�i�Ĵ ~n�, and

QN�̂
ðNÞ ¼ 1N�̂1N . The variance of an estimator �estð	Þ

(assumed to be unbiased, i.e., ��est ¼ �) is ð��estÞ2 ¼P
	Pð	j�Þð�estð	Þ � �Þ2 ¼ P

. We used thatP
	

P
ðN;MÞ2Ið	Þ ¼

P
N

P
M holds since

P
	 Êð	Þ ¼ 1. In

the last inequality we used that ð��ð ~NÞ
est Þ2 	 1=N2 holds

for unbiased estimators [7]. For m 	 1, Pð ~	j�Þ ¼Q
m
i¼1 Pð	ij�Þ and it can be shown that ð��estÞ2 	P
~NQ ~N=

P
m
i¼1 N

2
i 	 P

~NQ ~N=ð
P

m
i¼1 NiÞ2, where the first in-

equality follows as above and the second inequality holds
for positive numbers. For m ¼ 1, we then obtain
ðPNQN=N

2ÞðPNQNÞ 	 ðPNQN=NÞ2 from the Cauchy-
Schwartz inequality. Applying it again leads to
ðPNQN=NÞðPNQNNÞ 	 ðPNQNÞ2 ¼ 1. Therefore, we

arrive at ��est 	 1=hN̂i. This can be done in analogy for

m 	 1. This proves that ��est 	 1=mhN̂i.
The bound (9) can be proven as in Appendix A by using

general states and FQ½jc ðNÞi; Ĵ ~n� � N2.
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and Pð"j�Þ ¼ Tr½Êð"Þ�̂ð�Þ�. The QFI is the maximum
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P

kpk�̂kð�Þ� �
P
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