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The inner ear achieves a wide dynamic range of responsiveness by mechanically amplifying weak

sounds. The enormous mechanical gain reported for the mammalian cochlea, which exceeds a factor of

4000, poses a challenge for theory. Here we show how such a large gain can result from an interaction

between amplification by low-gain hair bundles and a pressure wave: hair bundles can amplify both their

displacement per locally applied pressure and the pressure wave itself. A recently proposed ratchet

mechanism, in which hair-bundle forces do not feed back on the pressure wave, delineates the two effects.

Our analytical calculations with a WKB approximation agree with numerical solutions.
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Hearing employs an active process to achieve a remark-
able sensitivity, frequency selectivity, and dynamic range
[1,2]. Understanding the cellular basis of the active process
in the mammalian cochlea remains a fundamental and
controversial topic in contemporary hearing research.
Active force production by hair bundles, the sensory or-
ganelles of the mechanoreceptive hair cells, underlies the
active process in nonmammalian tetrapods [3,4] and con-
tributes to mammalian hearing [5,6]. The wide dynamic
range of the mammalian cochlea, however, poses a chal-
lenge for active hair-bundle motility as the cochlear am-
plifier. The cochlea achieves this dynamic range by
compressing a large range of input sound intensities into
a relatively narrow range of outputs in the form of hair-
bundle displacements. This nonlinear compression results
from the active process and reflects its gain. Experimental
measurements in vitro indicate that active hair-bundle
forces can increase the amplitude of hair-bundle displace-
ments by a factor of about 10 [3]. Although the value may
be larger in vivo and be further increased through coupling
of neighboring hair bundles [7], this low gain falls orders of
magnitude short of the amplification of 4000 or more
measured in the intact mammalian cochlea [1,8]. In this
Letter we show how active hair-bundle motility with a low
gain can yield a large cochlear gain by interacting with a
pressure wave. Although we focus on hair bundles as the
force-producing elements, our description is more general
and the principle of dual amplification applies whenever
active forces amplify the basilar-membrane displacement.
Several previous models for the active cochlea have there-
fore contained this effect implicitly [9–11]. Amplification
of the pressure wave has not been explicitly stated or
quantified previously, however, and the importance of the
resulting dual amplification for cochlear gain has not been
recognized.

The cochlea consists of two fluid-filled chambers that
are separated by the elastic basilar membrane [Fig. 1].
Sound vibrates the stapes inserted into the oval window

at the cochlear base, inducing a pressure difference across
the basilar membrane that propagates along the membrane
as a traveling wave from the base towards the apex. The
physics of the pressure wave and amplification emerges
from a one-dimensional model of the cochlea in which the
fluid flows in the two interacting chambers are assumed to
be constant across a vertical cross section [Fig. 1]. Let
pðr; tÞ denote the pressure difference across the basilar
membrane at position r and time t and let XBMðr; tÞ repre-
sent the evoked basilar-membrane displacement. The
equations of momentum and continuity then yield the
wave equation [12]

�@2t XBMðr; tÞ þ�@tXBMðr; tÞ ¼ h

2
@2rpðr; tÞ: (1)

The phenomenological term including the drag coefficient
� accounts for friction along the boundaries of the coch-
lear chambers [13]; � denotes the fluid’s density and h the
height of each chamber.
To solve Eq. (1) we require the dependence of the

basilar-membrane displacement XBMðr; tÞ on the pressure
difference pðr; tÞ. Consider stimulation at a single angular
frequency ! ¼ 2�f such that pðr; tÞ ¼ ~pðrÞei!t þ c:c:
and XBMðr; tÞ ¼ ~XBMðrÞei!t þ c:c: with the Fourier com-
ponents ~pðrÞ and ~XBMðrÞ and with ‘‘c.c.’’ denoting the
complex conjugate. In the passive cochlea ~XBMðrÞ depends
linearly on ~pðrÞ:

FIG. 1 (color online). The mammalian cochlea. Sound displa-
ces the stapes (top left), producing a pressure difference ps

across the basilar membrane (BM) that elicits a traveling wave
of pressure difference and membrane displacement.
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i!Zpassðr; !Þ ~XBMðrÞ ¼ ABM~pðrÞ; (2)

in which Zpassðr;!Þ represents the local passive impedance
of a transverse strip of the basilar membrane of area ABM.
The local sensitivity j ~XBMðrÞ=~pðrÞj, the magnitude of the
basilar-membrane response to the local pressure, is given
by jABM=½!Zpassðr;!Þ�j and is thus independent of ~p. In a
normal cochlea, though, the active process increases the
basilar-membrane displacement and introduces a nonline-
arity. Because the active process counters viscous damp-
ing, it can poise each segment of the basilar membrane near
an oscillatory instability at the local characteristic fre-
quency [10,14]. In the vicinity of the resulting Hopf bifur-
cation the basilar membrane’s response to varied pressures
is inherently nonlinear. The nonlinear response, however,
arises over only a limited range of pressures. Large pres-
sures yield the passive linear response, for they are not
amplified. Small pressures also yield a linear response but
with an increased gain; linearity arises in this instance
because the system does not operate exactly at the bifur-
cation and because of noise [15]. For these small pressures
we may write

i!Zactðr; !Þ ~XBMðrÞ ¼ ABM~pðrÞ (3)

with the local active impedance Zactðr;!Þ. The magnitude
of the ratio between the linear active and the linear passive
responses, jZpassðr;!Þ=Zactðr; !Þj, represents the local
gain.

Equation (1) may be solved through the WKB approxi-
mation when the basilar-membrane displacement depends
linearly on ~pðrÞ [12]. Assume i!Zðr; !Þ ~XBMðrÞ ¼
ABM~pðrÞ, in which ~Zðr;!Þ represents either the passive
or the active basilar-membrane impedance. For a pressure
~pðr ¼ 0Þ ¼ ps applied at the stapes and for the case of a
forward-traveling wave, the ansatz

~pðrÞ ¼ aðrÞe�i!bðrÞ (4)

yields, to orders !2 and ! respectively,

bðrÞ ¼
Z r

0
dr0

1

cðr0Þ and aðrÞ ¼ ps

ffiffiffiffiffiffiffiffiffi
cðrÞ
cð0Þ

s
e��bðrÞ=ð2�Þ;

(5)

with the wave’s velocity

cðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i!hZðr; !Þ
2�ABM

s
: (6)

The magnitude of the pressure follows as

j~pðrÞj ¼ jaðrÞje!Im½bðrÞ�: (7)

At each position along the basilar membrane, the local
impedance defines a resonant frequency. Assume that
Zðr; !Þ results from mass mðrÞ, viscous damping �ðrÞ,
and stiffness KðrÞ:

Zðr;!Þ ¼ i!mðrÞ þ �ðrÞ � iKðrÞ=!: (8)

The mass and stiffness yield a resonant frequency !0ðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðrÞ=mðrÞp

at which the imaginary part of Zðr;!Þ van-
ishes and changes sign: Im½Zðr;!Þ�< 0 for!<!0ðrÞ but
Im½Zðr; !Þ�> 0 for !>!0ðrÞ. It follows from Eqs. (5)
and (6) that, in the absence of basilar-membrane friction,
the pressure wave can travel along the basilar membrane as
long as !<!0ðrÞ and thus up to the resonant position r0
defined by ! ¼ !0ðr0Þ. Indeed, basal to r0 the wave ve-
locity cðrÞ is real because Im½Zðr; !Þ�< 0. Upon ap-
proaching r0, Im½Zðr; !Þ� vanishes and therefore cðrÞ
also tends to zero. Apical to the resonant position, where
Im½Zðr; !Þ�> 0, the wave velocity cðrÞ becomes imagi-
nary. The amplitude of the pressure wave thus declines
upon approaching the resonant position, for it is propor-

tional to
ffiffiffiffiffiffiffiffiffi
cðrÞp

[Eq. (5)]. The basilar-membrane displace-

ment XBMðrÞ varies in proportion to ½cðrÞ��3=2, however,
and therefore diverges at the resonant position r0. Viscous
forces dominate the basilar-membrane impedance at r0 and
yield a finite wave velocity as well as a finite displacement.
Amplification counteracts viscous damping in twoways.

First, it increases the basilar membrane’s local sensitivity.
At the resonant position the basilar-membrane impedance
includes only the viscous contribution, such that the dis-
placement varies in inverse proportion to the damping
coefficient: ~XBMðr0Þ ¼ �iABM~pðr0Þ=½!�ðr0Þ�. We assume
amplification to reduce the damping coefficient in the
basilar-membrane impedance [Eq. (8)] from the passive
value �passðrÞ to a smaller value �actðrÞ and consequently to
yield a gain in basilar-membrane displacement, and thus in
hair-bundle displacement, of j�pass=�actj. Experiments on
the dynamics of hair bundles demonstrate this effect [3]: a
small force applied directly to a hair bundle elicits an
in vitro displacement that is about a factor of 10 greater
for an active than for a passive bundle [3].
The second effect of amplification is to enhance the

amplitude of the pressure wave itself. The term Im½bðrÞ�
in the contribution e!Im½bðrÞ� to the pressure magnitude
[Eq. (7)] represents the imaginary part of the integrated
inverse wave speed and results from damping [Eq. (5)].
Because Im½c�1ðrÞ� is approximately proportional to
��ðrÞ away from the resonant position, damping occurs
at a strength proportional to the integrated viscosity. A
reduced damping coefficient �actðrÞ basal to the resonant
position therefore diminishes damping and augments the
pressure wave, yielding a gain of expf!Im½bactðr0Þ� �
!Im½bpassðr0Þ�g � expf�!Im½bpassðr0Þ�g. Because this in-
crease represents the cumulative reduction in damping, its
magnitude can significantly exceed the gain in local sensi-
tivity that follows from the reduced local damping alone.
What is the magnitude of the gain in pressure amplitude?

Experimental measurements on the traveling wave’s phase,
!Re½bðrÞ�, indicate that the wave undergoes about two
cycles while traveling from the stapes to its resonant
position [1]: !Re½bðr0Þ� � 4�. The imaginary part of
c�1ðrÞ is smaller than the real part distant from the resonant
position, but comparable in its vicinity. The integrated
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imaginary part of c�1ðrÞ, Im½bðr0Þ� is thus smaller than but,
for the passive case, presumably of the same order of
magnitude as its integrated real part, Re½bðr0Þ�. Because
e2� is about 500, active hair-bundle motility can enor-
mously enhance the amplitude of the pressure wave near
the resonant position [Fig. 2(a)]. Measurements of the
intracochlear pressure near the basilar membrane confirm
the amplification of the pressure amplitude [16].

The global sensitivity j ~XBMðr;!Þ=psj, the magnitude of
the basilar-membrane movement in response to the pres-
sure at the stapes, is subject both to the gain in local
sensitivity and to pressure-wave amplification. The net
gain for this dual amplification follows as the product of
the two individual gains and can exceed 10 000 [Fig. 2(b)].
For realistic parameter values, numerical solution of the
wave equation (1) validates the WKB approximation and
shows that the amplitude of the amplified pressure wave
exceeds the passive value by a factor of about 1000 at the
resonant position [Fig. 2(a)]. The local basilar-membrane
sensitivity experiences an additional gain near 90, resulting
in an overall gain of about 90 000 [Fig. 2(b)].

Damping of the pressure wave also results from friction

through the term e��Re½bðrÞ�=ð2�Þ in the pressure amplitude
[Eq. (5)]. Because active hair-bundle motility presumably
does not change the imaginary part of the impedance
Zðr; !Þ, which includes the inertial and elastic contribu-
tions, it should not significantly alter Re½bðrÞ� and there-
fore not counter this type of friction.

Amplification causes a compressive nonlinearity in the
hair bundle’s response to varied sound-pressure levels. The
dominant nonlinearity presumably results from the non-
linear dependence of the open probability P of ion chan-
nels in the hair bundle on its deflection XHB. The
mechanotransduction channels are situated at the tips of
the hair bundle’s stereocilia and are connected by filamen-

tous tip links to neighboring stereocilia. Deflection of the
hair bundle in the excitatory direction pulls transduction
channels open, with the open probability following a
Boltzmann distribution:

PðXHBÞ ¼ ½1þ e�BXHB��1: (9)

The coefficient B encodes the energy release due to chan-
nel opening. For small and large values of XHB, PðXHBÞ is
asymptotically linear. For intermediate hair-bundle dis-
placements, however, a nonlinearity emerges that is pre-
dominantly cubic because outer hair cells operate at a
symmetry point around a resting open probability
PðXHB ¼ 0Þ ¼ 0:5.
For variations in the locally applied pressure the hair

bundle’s displacement exhibits a cubic nonlinearity as
well. The release of tension in tip links during channel
opening, which is proportional to P� P0, produces a hair-
bundle force FHB ¼ �FTLðP� P0Þ with a coefficient FTL

[5]. Because of feedback from molecular motors, this force
can counter viscous damping and poise the bundle near a
Hopf bifurcation [17–19]. The hair-bundle response can be
approximated by

~XHB ¼ e

�
fþ ~p

gþ ~p

�
2=3

~p: (10)

The coefficients e and f follow from the linear active

response for small pressure differences, eðf=gÞ2=3 ~p, and
the linear passive response for large pressure differences,
e~p. The constant g determines the location of the inter-
mediate nonlinear regime in which the cubic nonlinearity
~XHB ¼ ef2=3 ~p1=3 emerges. The agreement with a numeri-
cal solution is excellent [Figs. 3(a) and 3(b)] [20]. The
cubic nonlinearity introduces a slope of �2=3 in the local
sensitivity to varying pressure [Fig. 3(a)].
Hair-bundle displacement is related to basilar-

membrane displacement. Substituting ~XBM by ~XHB in
Eq. (1) through a model for the organ of Corti’s micro-
mechanics [21] and subsequently substituting ~XHB by ~p

FIG. 2 (color online). Cochlear pressure and global sensitivity
of the basilar membrane from numerical solution of Eq. (1)
(lines) and from the WKB approximation (circles) relative to ps

for a frequency f ¼ 8 kHz. (a) Pressure (red or gray, active;
black, passive). (b) Global sensitivity (red or gray, active; black,
passive). The gain in global sensitivity exceeds the gain in
pressure by the factor j�act=�passj ¼ 90. The results in this figure
and the following have been obtained using the two-mass model
for the organ of Corti and parameters from Ref. [21]; � ¼
103 kg �m�3.

FIG. 3 (color online). Nonlinearities at the 10 kHz resonant
position. (a) Local sensitivity of hair-bundle displacement.
Numerical solutions with the open probability given by Eq. (9)
(red or light gray) agree with the approximation of Eq. (10) (blue
or dark gray). (b) Global sensitivity for different sound frequen-
cies. The response becomes linear as the frequency deviates from
the resonant frequency.
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through Eq. (10) we arrive at a wave equation for ~p that we
can solve numerically. Because of dual amplification the
resulting compressive nonlinearity in basilar-membrane
and hair-bundle motion in response to a pressure ps at
the stapes extends over a significantly broader range of
sound intensities than the nonlinearity per locally applied
pressure [Figs. 3(a) and 3(b)]. Amplification of the pres-
sure wave follows from a decreased damping term

e!Im½bðrÞ�, so the resulting nonlinearity reflects properties
of the traveling wave and the basilar membrane basal to the
characteristic point. We still find in our numerics an ap-
proximately cubic nonlinearity [Fig. 3(b)].

Dual amplification arises when hair-bundle force feeds
back onto the basilar membrane and amplifies its motion,
thus enhancing the pressure wave. However, this feedback
can be avoided: hair-bundle motion could decouple from
basilar-membrane motion, omitting its amplification even
if the reverse coupling were maintained. This intriguing
type of unidirectional mechanical coupling can arise from
electromotility, the ability of the outer hair cell’s body to
elongate and contract in response to electrical stimulation
[21]. In this ‘‘ratchet mechanism,’’ forces acting on the
basilar membrane elicit hair-bundle motion whereas the
reverse does not hold. The ratchet mechanism may under-
lie hearing in the mammalian cochlea at frequencies below
1–2 kHz [21].

The ratchet mechanism separates amplification of hair-
bundle motion per local pressure difference from amplifi-
cation of the pressure wave. Because in the ratchet mecha-
nism active hair-bundle forces do not amplify basilar-
membrane motion, they do not enhance the pressure
wave [Fig. 4(a)]. The net hair-bundle gain is low, about
10, for it reflects solely the enhanced local sensitivity of
hair bundles [Fig. 4(b)]. The compressive nonlinearity
associated with this low gain encompasses a much smaller

dynamic range than for dual amplification as observed
experimentally in the apical half of the cochlea [1].
We have demonstrated that active hair-bundle motility

can enhance hair-bundle displacement in two ways. First,
active hair-bundle force increases a bundle’s local sensi-
tivity, with a plausible gain of 10–100. Second, hair-bundle
force can feed back onto the basilar membrane and there-
fore enhance the amplitude of the pressure wave itself,
yielding a gain of 100 and greater. The overall cochlear
gain, the product of these two components, can exceed
10 000.
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