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Antennas are widely used by electrical engineers to enhance the coupling between propagating waves

and electric sources or detectors. It is thus tempting to develop an optical analog to tailor visible light

emission or absorption by an atom or a molecule. This idea has been put forward recently and it has been

demonstrated that both the radiative rate and the emission pattern of optical emitters can be modified by

metallic nanostructures. In this Letter, we introduce the concept of impedance for a nanoantenna and for

two-level systems or nanoparticles described by electric dipole moments. We show how these concepts

can be used to reconcile different descriptions and also to optimize nanoantennas.
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In general terms, an antenna is a device that allows us to
control the coupling between propagating waves and a
finite size detector or radiation source. Antennas working
in the optics regime at nanometer scale have been demon-
strated recently [1–8]. In radio waves, the so-called gain
characterizes the directivity of the antenna and the resis-
tance characterizes the emitted power RRI

2=2 where I is
the intensity in the antenna and RR is the radiation resist-
ance. In optics, the far-field emission pattern has been
calculated by many authors [9–12]. Understanding how a
nanoantenna can increase the power emitted by an excited
two-level system with a fixed energy @! is more subtle. A
nanoantenna can change the emission rate. Thus, under
continuous illumination, the energy emitted per second can
be increased because the number of absorption or emission
cycles increases. It has been known since Drexhage’s
pioneer work [13] that the emission rate of a two-level
system is not an intrinsic property of a quantum system but
depends on the environment. In the 1940s, Purcell [14]
suggested to use a microcavity to modify the emission rate.
This concept proved to be very useful and led to a large
number of developments [15,16] in quantum optics. The
figure of merit used in this context is the so-called Purcell
factor. More recently, the role of metallic nanostructures as
nanoantennas has been demonstrated [1–7]. The analysis
of these results is done in terms of modification of radiative
decay rate �R and nonradiative decay rate �NR [9,10].
Recently, Maier [17] has introduced an analysis of metallic
nanostructures in terms of effective volume and quality
factor to reconcile the microcavity point of view with the
antenna point of view. This approach has been successfully
employed to analyze the properties of a plasmonic resona-
tor by Khurgin and colleagues [18]. As both emission by
atoms and emission by antennas deal with emission of
radiation by electrons, there must be a connection between
the concepts of emission rate used for metallic nanoanten-
nas, Purcell factor used for microcavities, and radiation
resistance used for radio waves antennas. The purpose of
this Letter is to introduce a general formalism that allows
us to analyze microcavities and nanoantennas in the optical

regime using the impedance concept. To this aim, a new
definition of the impedance is needed. If the nanoantenna
consists in two metallic rods with a gap [2], the voltage
across the gap can be defined. It is also possible to define a
current density using the so-called displacement current.
The application of these concepts in nanooptics has been
extensively discussed by Engheta’s group who has intro-
duced many novel ideas in a series of recent contributions
[19–22]. However, this approach cannot be used when
dealing with the coupling between a two-level system
and a nanosphere or a microcavity in which gaps cannot
be defined. Indeed, when the antenna is a single metallic
nanosphere or a microcavity, no voltage difference U and
no current intensity I can be defined so that the usual
definition U=I cannot be used.
We start by a heuristic introduction of the impedance of

an optical antenna based on the analysis of the power
emitted by an optical dipole. Let us consider the power
P0 transferred by the dipole to the optical field. Assuming
an expð�i!tÞ time dependence, the time averaged value is

given by P0 ¼ h� dp
dt � Ei ¼ 1

2 Reði!p � E�Þ. There is a

clear similarity between the structure of this equation and
the familiar form of the electrical power P dissipated in a
load P ¼ 1

2 ReðIU�Þ. This suggests to introduce a linear

relation between the dipole moment and the field that
accounts for the power dissipation due to the antenna.
Such a relation is given by the Green tensor that yields
the field radiated at r0 by a dipole located at r0:

E ðrÞ ¼ G
$ðr0; r0; !Þ � pðr0Þ ¼ G

$ðr0; r0; !Þ
�i!

� ½�i!pðr0Þ�:
(1)

In the following, we assume that the dipole is oriented

along the z axis so that p �G$�ðr0; r0; !Þ � p� ¼
jpj2G�

zzðr0; r0; !Þ. The energy transferred by the dipole to

the field can be written in the form Po ¼
1
2 ImðGzzðr0;r0;!Þ

! Þj!pðr0Þj2. This has the structure of the

power 1
2 ReðZLÞjIj2 dissipated in a load ZL. A comparison
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between the two forms of the power delivered by a source
suggests the following identification:

I$�i!pzðr0Þ U$�Ezðr0Þ Z$�iGzzðr0;r0;!Þ
!

;

(2)

where we haveU ¼ ZI. As for lumped elements, losses are
given by the real part R of the impedance Z ¼ Rþ iY. The
resistive part of the impedance is Gi

zz=! and accounts for
both radiative losses and Joule losses. This result allows us
to establish a connection with the quantum optics point of
view. From Fermi’s golden rule, we know that the sponta-
neous emission rate is proportional to the number of final
states available and therefore to the local density of elec-
tromagnetic states. The latter is proportional to the imagi-
nary part of the Green tensor [23–26] and therefore to the
nanoantenna resistance. It is important to emphasize that
this impedance has the dimension of � �m�2. It is thus an
impedance per unit area. The difference stems from the
fact that we use �i!pz (in A �m) instead of I (in A) and
�Ez (in V=m) instead of U (in V). We shall therefore use
the term ‘‘specific impedance’’ hereafter. We note that this
approach is similar to the so-called emf method introduced
by Brillouin [27] in 1922 to derive the input impedance in
the case of a wire antenna. For the sake of illustration, let us
apply this tentative definition to simple and well-known
systems: a vacuum, a microcavity, and a metallic nano-
sphere. The details of the calculation of the Green tensor
for each case are given in the supplementary material [28].

We first consider emission by a dipole source in a
vacuum. In the analogy, the radiating dipole is equivalent
to a current source and the vacuum is equivalent to the load.
According to the previous discussion, the impedance of the
vacuum can be derived from the Green tensor. The imagi-
nary part of the Green tensor is evaluated in Ref. [29] and is
given by Gi

0zzðr0; r0; !Þ ¼ !3=6��0c
3. Using this equa-

tion, we find: P0 ¼ !4jpj2=12��0c3. Hence, we have
recovered the familiar power emitted by a dipole in a
vacuum. It is important to note that the real part of the

vacuum Green tensorG
$

0ðr0; r; !Þ (or the imaginary part of
the specific impedance) diverges when r reaches r0. This
problem can be circumvented by including the real part of
the Green tensor in the definition of the polarizability of the
source as discussed in the supplementary material. In the
following, the vacuum impedance will always be reduced
to its resistive part R0, the reactive part (real part of the
vacuum Green tensor) being included in an effective polar-
izability of the source.

We can also apply the impedance definition to a micro-
cavity. It is found that the impedance of the microcavity is

equivalent to a parallel RLC circuit (see Fig. 1) with R ¼
Q!

�0Veff!
2
r
, L ¼ 1

�0Veff!
2
r
, C ¼ �0Veff . The microcavity can thus

be viewed as a notch filter with a large imaginary imped-
ance at resonance. Let us note that the knowledge of L and

C can be used to derive the energy stored in the system. We
stress that the Purcell factor of the microcavity is recovered
in a natural way by taking the ratio of the vacuum and
microcavity resistance. We now turn to the nanoantenna.
For the sake of illustration, let us consider a spherical
nanoparticle with radius a and dielectric constant �ð!Þ
given by Drude’s model. The nanoantenna also appears
to be an effective RLC parallel circuit. The effective mode
volume of the nanoantenna Veff ¼ �z6=a3 can be much
smaller than the typical value of a microcavity ð�=2nÞ3.
For instance, when using nanospheres with a radius equal
to, e.g., 5 nm and a distance z ¼ 10 nm, we find Veff ¼
25� 10�6 �m3. This result clearly illustrates the potential
of nanoantennas in terms of Purcell factor. Yet, for prac-
tical application as an antenna, Purcell’s factor is not the
only parameter. A large part of the energy extracted from
the emitter is converted into heat in the antenna. It is thus
useful to introduce the radiative yield. The decay rate of the
resonant mode can be split in two terms: � ¼ �R þ �NR,
where �R and �NR are the radiative and nonradiative decay
rates, respectively. Since the decay rate is proportional to
the inverse of the resistance, the equivalent circuit involves
two parallel resistances. Finally, microcavities or nano-
antennas at resonance can be modeled by a parallel RLC
circuit, with two specific resistances, as shown in Fig. 1.
The radiative yield of the resonant mode can be written

as a ratio of resistances: �rm ¼ �R

�Rþ�NR
¼ RNR

RNRþRR
. In con-

clusion, we have introduced a definition of the impedance
that is based on the Green tensor. Hence, it is defined for
any structure and involves only the knowledge of the field
generated by a dipole at its own location. Although we
have used simple models to illustrate this concept with
analytical formulas, we point out that numerical simula-
tions can be used to derive the Green tensor Gzzðr0; r0; !Þ
for more complex geometries.
In order to account for interactions between the emitter

and the antenna, we again seek inspiration in the circuit
formalism. We need to introduce the two-level system
impedance in order to be able to account for coupling
between the antenna and the two-level system. Defining
an internal specific impedance for the source amounts to
finding a linear relation between the induced dipole mo-
ment pind and the electric field. A quantum analysis of
resonant scattering using Bloch equations [30,31] shows

FIG. 1. Equivalent circuit RLC of a microcavity or a metallic
nanoantenna.
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that for incident intensities much smaller than the satura-
tion intensity, the interaction is essentially a coherent
resonant scattering process that can be described using a
polarizability: pind ¼ �"0E. We can thus write E ¼
Zinð�i!pindÞ, where we have introduced the internal spe-
cific impedance of the source

Zin ¼ i

!��0
: (3)

Let us consider for the sake of illustration the particular
form of the polarizability for a two-level system given [24]
by �ð!Þ ¼ �0=½!2

0 �!2 � i�!� where �0 can be written

using the oscillator strength f as �0�0 ¼ ðe2=mÞf and !0

is the bare frequency of the dipole decoupled from all

fields. We find Zin ¼ �
�0�0

þ i
!2

0

�0�0
1
! � i! 1

�0�0
. Intro-

ducing the vacuum impedance Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0=�0
p

and the ex-
tinction cross section at the resonant frequency � ¼
!0

c Im½�ð!0Þ�, we obtain:

Zin ¼ Z0

�

�

1þ iQ
!0

!
� iQ

!

!0

�

(4)

where Q is the quality factor of the resonance Q ¼ !0

� . As

shown in Fig. 2, this impedance has the structure of the
impedance of a RLC series circuit.

We have introduced the specific impedance for a nano-
antenna or a microcavity and a two-level system. We now
derive the corresponding circuit equation. We start from
the equation pz ¼ �"0½Eext;z þ ðiGi

0zz þ SzzÞpz�, where

Eext;z is an external illuminating field and Szz ¼
Gzz � iGi

0zz accounts for the environment contribution to

the Green tensor. This shows that the external source in the
electrical analogy is a constant voltage source Uext ¼
�ðZant þ R0 þ ZinÞI [see Fig. 3(a)].

Note that the above equation is also valid for an atom or
a small particle with polarizability � considered to be an
absorber. We can use the equivalent circuit to derive the
absorption in the load by using RinjIj2=2. This allows us to
maximize the absorption using the conjugate impedance
matching condition. In order to discuss spontaneous emis-
sion, we cancel the external voltage source (Eext;z ¼ 0),
place the system in an initial state and study its time
evolution [see Fig. 3(b)]. In the harmonic impedance de-
scription, the equation of the system is then Zantð!Þ þ
R0 þ Zinð!Þ ¼ 0.

We consider now two applications: the emission of a
quantum emitter in a microcavity, and the enhancement of
the electroluminescence efficiency by silver nanoparticles.

Regarding the quantum emitter in a microcavity, the pre-
vious equation has two solutions (strong coupling regime)
or one solution (weak coupling regime). For an emitter
without intrinsic losses (� ¼ 0, or Rin ! 1), it is a simple
matter to check that the eigenfrequency of the coupled
system in the weak coupling regime is given by:! ’ !0 �
i�0�0!0Z=2, or ! ’ !0 þ �0�0Gzzðr0; r0; !0Þ=2. The
real part of G yields a frequency shift due to the inter-
action of the atom with the microcavity. The decay rate
is the imaginary part of this complex frequency
�0�0G

i
zzðr0; r0; !0Þ�=2. It shows that the two-level system

lifetime is controlled by the local density of electromag-
netic states as expected from Fermi’s golden rule. Here we
recover the standard result derived for a microcavity [15].
An advantage of the impedance formalism is that this result
can be easily applied to any resonant structure.
We now consider the enhancement F of the electrolu-

minescence efficiency of a quantum well by silver nano-
particles already studied by Khurgin et al.. Without an
antenna, the emitter decay rate through radiation in a
vacuum is characterized by R0 and the nonradiative pro-
cesses are characterized by an internal resistance Rin. The
radiative efficiency is then �rad ¼ R0=ðRin þ R0Þ. We now
study how this efficiency is improved by the presence of a
nanoantenna. As seen above, the silver nanoparticle is
modeled by a RLC parallel circuit with two resistances
RR, RNR in parallel. We introduce the nanoantenna radia-

tive yield �pr ¼ RNR

RNRþRR
and the nanoantenna Purcell factor

Fp ¼ ðR0 þ RÞ=R0. For R � R0, we have Fp ’ R=R0. We

now derive the radiative fluorescence efficiency with an
antenna. If the emission frequency coincides with the
nanoantenna resonance, this is simply given by the ratio

of dissipated powers in specific resistances:
R0þR�pr

R0þRþRin
. It is

then easy to recover the result given by Khurgin et al.

F ¼ 1þ Fp�pr

1þ Fp�rad

: (5)

Note that the formalism allows us to account for the effect
of the detuning of the antenna.
In summary, a definition of the impedance of a nano-

antenna and of a single quantum emitter has been intro-

FIG. 2. Equivalent circuit of a quantum emitter. The lumped
circuit elements are Rin ¼ Z0

� , Lin ¼ Z
�

Q
!0

and Cin ¼ �
Z0!0Q

.

FIG. 3. Applications of the circuit analogy. (a) Absorption in
the presence of an external field (Uext). Zin is the load imped-
ance. (b) Spontaneous emission is modeled by looking for the
complex eigenfrequency with Uext ¼ 0.
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duced. These concepts allow us to establish a link between
quantum optics and the electrical engineering points of
view through the use of Green’s tensor and the local
density of states. Furthermore, this definition allows us to
analyze in a unified framework the effect of the environ-
ment (nanoantenna, microcavity, waveguide, interfaces,
etc.) on a quantum emitter. Explicit forms of the lumped
elements of a microcavity and a simple two-level system
have been derived. In summary, the concept of nanoan-
tenna impedance provides both a deeper understanding of
nanoantennas and a practical tool for the design and quan-
titative characterization of nanoantennas.
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(Springer, Berlin, 1998).

[17] S. A. Maier, Opt. Express 14, 1957 (2006).
[18] J. B. Khurgin, G. Sun, and R.A. Soref, Appl. Phys. Lett.

93, 021120 (2008).
[19] N. Engheta, Science 317, 1698 (2007).
[20] A. Alu and N. Engheta, Nat. Photon. 2, 307 (2008).
[21] A. Alu and N. Engheta, Phys. Rev. Lett. 101, 043901

(2008).
[22] A. Alu and N. Engheta, Phys. Rev. B 78, 195111 (2008).
[23] R. Sprik, B. A. van Tiggelen, and A. Lagendijk, Europhys.

Lett. 35, 265 (1996).
[24] L. Novotny and B. Hecht, Principles of Nano-Optics

(Cambridge University Press, Cambridge, 2006).
[25] K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet,

Phys. Rev. B 68, 245405 (2003).
[26] Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A.

Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet,
Nature (London) 444, 740 (2006).

[27] L. Brillouin, Radioelectricité 3, 147 (1922).
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