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We calculate the fidelity susceptibility �f for the Luttinger model and show that there is a universal

contribution linear in temperature T (or inverse length 1=L). Furthermore, we develop an algorithm—

based on a lattice path integral approach—to calculate the fidelity FðTÞ in the thermodynamic limit for

one-dimensional quantum systems. We check the Luttinger model predictions by calculating �fðTÞ
analytically for free spinless fermions and numerically for the XXZ chain. Finally, we study �f at the two

phase transitions in this model.
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Phase transitions are usually identified by considering
suitably defined order parameters. Lately, new concepts
originating from quantum information theory have been
put forward which allow us to detect phase transitions
without any prior knowledge of the order parameter
[1–12]. The most widely used measures are the entangle-
ment entropy [1] and the fidelity [2–10]. The latter ap-
proach is based on the notion that at a quantum phase
transition the ground state wave function is expected to
change dramatically with respect to a parameter � driving

the transition [5]. If the Hamiltonian is given by Ĥ� ¼
Ĥ0 þ �Ô, then the fidelity is defined as

F0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�0j��ih��j�0i=h�0j�0ih��j��i

q
; (1)

where j�0i [j��i] is the ground state wave function of Ĥ0

[Ĥ�], respectively. The fidelity has been studied analyti-
cally for one-dimensional (1D) models like the transverse
Ising or the XY model [5,7,8] as well as numerically for a
number of other systems [2,3,8]. Importantly, the fidelity
approach connects many different areas of physics and is
not restricted to the study of phase transitions. The overlap
between wave functions also plays a central role for scat-
tering problems (Anderson’s orthogonality catastrophe)
[13], as a measure for variational wave functions, for
quantum information processing [14], the Loschmidt
echo [15], and for quench dynamics [16]. Apart from
calculating the fidelity for specific models it is therefore
of great interest to understand possible universal behavior.
For critical 1D quantum systems such universality is often
related to conformal invariance. Important examples are
the scaling of the free energy [17] and the entanglement
entropy [1] with system size L and temperature T.

In this Letter we will introduce a new finite-temperature
(mixed state) fidelity and show that it leads to the fidelity
susceptibility�f used in recent quantumMonte Carlo simu-

lations [3]. We then show that �f for the Luttinger model

has a universal term linear T. Similarly, there is a universal
term �1=L for a finite system at zero temperature.
�fðT ¼ 0Þ in the thermodynamic limit, on the other hand,

depends on a cutoff, a fact that has been missed in an earlier
work [10]. Furthermore, we express FðTÞ in the thermody-
namic limit for any 1D quantum system as a function of the
largest eigenvalues of three transfer matrices. This allows
for a very efficient numerical calculation of the fidelity
making it an ideal tool for finding phase transitions without
any prior knowledge of the order parameters. We apply this
method to study �fðTÞ for the S ¼ 1=2 XXZ chain with

respect to a small change in the anisotropy� allowing us to
check our results for the Luttinger model directly. A further
check is provided by an analytic calculation of �fðTÞ in the
free fermion case. Finally, we extract �fðT ¼ 0Þ for the

XXZ model from the numerical data and discuss its behav-
ior at the two critical points.
We can generalize (1) to finite temperatures so that

FTð0Þ ¼ 1 and limT!0FTð�Þ ¼ F0ð�Þ by

FTð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trfe��Ĥ0=2e��Ĥ�=2g

q
=ðZ0Z�Þ1=4 (2)

where � ¼ 1=T, Z0 ¼ Tre��Ĥ0 , and Z� ¼ Tre��Ĥ� . For a
many-body system the fidelity is expected to vanish
exponentially with the number of particles N no matter
how small the driving parameter � is [13]. The fidelity
density fð�Þ ¼ � 1

N lnF, however, stays finite. Since

fð� ¼ 0Þ ¼ 0 is a minimum, the first term in an expansion
for small � vanishes giving rise to the definition of the
fidelity susceptibility �f ¼ ð@2f=@�2Þ�¼0 [9]. From

Eq. (2) we find that

�f ¼ 1

N

Z �=2

0
�d�fhT Ôð�ÞÔð0Þi � hÔi2g (3)

where T denotes time ordering and Ôð�Þ ¼
expð�Ĥ0ÞÔ expð��Ĥ0Þ. In the following, we will consider
the case Ôð�Þ ¼ P

r ôðr; �Þ where ôðr; �Þ is a local opera-
tor. By using a Lehmann representation, Eq. (3) can be
shown to be consistent for T ! 0 with the ground state
fidelity directly obtained from the definition (1) [9].
Equation (3) has previously been used to define �fðTÞ
[3]. Here this expression for �fðTÞ in terms of a correlation
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function directly follows from Eq. (2). Note, however, that
FðTÞ in (2) is different from the mixed state fidelity as
defined in [6,7] which does not allow us to express the
corresponding �f as a simple correlation function.

Importantly, it has been shown that if �f as obtained

from the mixed state fidelity in [6,7] diverges then so
does �f as given in (3) and vice versa [3]. Finally, we

note that if ½Ĥ0; Ô� ¼ 0 then �fðTÞ ¼ �=8T with � ¼
hðPrôrÞ2i=ðNTÞ being the regular susceptibility.

The generic low-energy effective theory for a gapless 1D
quantum system is the Luttinger model [18]

HLL ¼ v

2

Z L=2

�L=2
dx

�
K

2
�2 þ 2

K
ð@x�Þ2

�
: (4)

Here v is a velocity, L ¼ Na the length with a being the
lattice constant, and K the Luttinger parameter. In general,
both K and v will change as a function of a driving
parameter � in the Hamiltonian of the microscopic model.

The operator appearing in (3) is therefore given by

Ô ¼ Ô1 þ Ô2 with

Ô 1;2 ¼ �1;2

2

Z L=2

�L=2
dx

�
K

2
�2 � 2

K
ð@x�Þ2

�
(5)

and �1 ¼ @v=@�, �2 ¼ vð@K=@�Þ=K. We note that Ô1 is

proportional to the Hamiltonian itself. By rescaling � !ffiffiffiffiffiffiffiffiffi
2=K

p
�, � ! ffiffiffiffiffiffiffiffiffi

K=2
p

� we can express the Hamiltonian

and therefore also Ô1 as the sum of the holo- and anti-
holomorphic components of the energy-momentum tensor
[19]. The finite-temperature correlation function (3) in-

volving Ô1 can then be calculated with the help of the
operator product expansion for this conformally invariant
theory. While the cross term vanishes, the integral (3) for

the operator Ô2 is divergent and we introduce a cutoff by

replacing
R�=2
0 ! R

�=2
�0

. Combining both contributions we

find in the thermodynamic limit at low temperatures

�fðTÞ ¼ �

8K2

�
@K

@�

�
2 þ �c

24v3

�
@v

@�

�
2
T; (6)

with � ¼ 1=ð�v�0Þ and c ¼ 1 being the central charge of
the free bosonic model. The universality found here for the
leading linear temperature dependence of �f is reminiscent

of the universal term in the free energy of 1D critical
quantum systems quadratic in temperature [17]. We also
want to remark that a universal subleading term in the zero
temperature fidelity has recently been discovered in certain
systems [20].

�fðT ¼ 0Þ as obtained in (6), on the other hand, is cutoff
dependent. This seems to be in contrast to an earlier
work [10] where �f was directly calculated at zero tem-

perature using the definition (1). This leads to �f ¼
ð@K=@�Þ2=ð4NK2ÞPk>0 and the result in [10] is obtained
if one assumes N=2 k values in the sum. The Luttinger
model, however, is a continuum model and the sum

therefore not restricted. If we introduce a UV cutoff
N�=2 then the first term in (6) is reproduced.
Similarly, we can calculate �f for the Luttinger model of

finite size L at zero temperature using Eq. (3). Because of
the unusual imaginary-time integration the result cannot be
obtained by simply replacing v=T ! L but rather the
second term in (6) gets replaced by cð@v=@�Þ2=ð8v2LÞ.
By using a lattice path integral representation, a 1D

quantum model can be mapped onto a two-dimensional
classical model with the additional dimension correspond-
ing to the inverse temperature. For the fidelity (2) this
amounts to separate Trotter-Suzuki decompositions for
each of the exponentials. We consider a Hamiltonian
with nearest-neighbor interaction and decompose the

Hamiltonian into He
0;� ¼ P

r evenh
r;rþ1
0;� and Ho

0;� ¼P
r oddh

r;rþ1
0;� . This allows us to write expð��H0Þ ¼

limM!1½expð��He
0Þ expð��Ho

0 Þ�M and equivalently for

the other exponentials in (2). Here � ¼ �=M is the
Trotter parameter. Rearranging the local Boltzmann
weights we can define the column transfer matrices de-
picted in Fig. 1. The spectra of these transfer matrices have
a gap between the largest and the next-leading eigenvalue
thus allowing it to perform the thermodynamic limit
exactly [21]. For the fidelity density we find

fTð�Þ ¼ � 1

N
lnF ¼ � 1

4
ln

�
�fffiffiffiffiffiffiffiffiffiffiffiffiffi
�0��

p
�

(7)

where �f, �0, and �� are the largest eigenvalues of the

transfer matrices Tf, T0, and T� defined in Fig. 1, respec-

tively. Because fTð0Þ ¼ @fT=@�j�¼0 ¼ 0 we can calculate
the fidelity susceptibility by �fðTÞ ¼ 2 lim�!0fTð�Þ=�2,

i.e., without having to resort to numerical derivatives. The
transfer matrices can be efficiently extended in imaginary-
time direction—corresponding to a successive reduction in
temperature—by using a density-matrix renormalization
group algorithm applied to transfer matrices (TMRG). If
we are mainly interested in�f then only small parameters �

have to be considered, allowing it to renormalize all three
transfer matrices with the same reduced density matrix.
Apart from the two different Boltzmann weights necessary
to form the three transfer matrices depicted in Fig. 1 the
algorithm can therefore proceed in exactly the same way as
the TMRG algorithm to calculate thermodynamic

0

λΗ  /2e−β

e−β λΗ

Tf TλT0

e−βΗ  /2

e−βΗ  

0

FIG. 1. Transfer matrices for calculating FðTÞ. Each open
[shaded] plaquette represents a local Boltzmann weight
expð��hr;rþ1

0 Þ [ expð��hr;rþ1
� Þ], respectively, with � being the

Trotter parameter.
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quantities. For technical details of the algorithm the reader
is therefore referred to Refs. [21,22].

In the following, we want to study �fðTÞ for the XXZ

model defined by

H ¼ J
X
r

fSxrSxrþ1 þ SyrS
y
rþ1 þ�SzrS

z
rþ1g (8)

with respect to a change in anisotropy �. Here S is a spin
S ¼ 1=2 operator and J the exchange constant which we
set to 1. We note that �f at zero temperature for finite

chains has previously been studied in [2,8]. The model
is gapless for �1 � � � 1 and gapped for j�j> 1. At
� ¼ 0 the model describes noninteracting spinless fermi-
ons and �f can be calculated exactly. The various diagrams

can be combined into two contributions

�ð1Þ
f ¼ 1

4�3

Z �

��
dk1dk2dk3

1� e��x=2

x2
y �nFk1 �n

F
k2
nFk3n

F
k1þk2�k3

�ð2Þ
f ¼ 1

16�3T2

�Z �

��
dkcosknFk

�
2Z �

��
dk cos2knFk �n

F
k ;

(9)

with x ¼ cosk1 þ cosk2 � cosk3 � cosðk1 þ k2 � k3Þ,
y ¼ cos2ðk1 � k3Þ � cosðk1 � k3Þ cosðk2 � k3Þ, nFk ¼ 1=
½1þ expð� coskÞ� and �nFk ¼ 1� nFk . The first contribution

at low temperatures yields �ð1Þ
f ¼ 0:195 37ð�5Þ þOðT2Þ

whereas the second is given by �ð2Þ
f ¼ T=ð6�Þ. In the inset

of Fig. 2 the exact solution for � ¼ 0 is compared with the
TMRG data obtained from �f ¼ 2fð�þ 	�Þ=ð	�Þ2 with
	� ¼ 10�3. The relative error without any extrapolation is
less than 0.1% for T > 0:1 and less than 1% for T > 0:04.

In the gapped regime, j�j> 1, the fidelity susceptibility
will show activated behavior. Following the arguments
in [23] for the magnetic susceptibility we expect

�f � T�3=2 expð�
=TÞ with 
 ¼ ��� 1 being the

spectral gap for �<�1 and 
 being half the spectral

gap for �> 1. Note that in the latter case the spectral
gap is exponentially small for � * 1 making it difficult
to detect numerically. As shown in Fig. 2 a fit of the data
for �<�1 is consistent with this scaling form with fitted

 values close to the one theoretically expected.
In the gapless regime, �1< � � 1, we know from the

Bethe ansatz that K ¼ �=ð�� arccos�Þ and v ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
=ð2 arccos�Þ. This allows us to check the uni-

versality of the contribution linear in T in (6) by a direct
comparison with the TMRG data (see Fig. 3) and to
accurately extract �fðT ¼ 0Þ. This method fails, however,

close to � ¼ 1 where corrections due to umklapp scatter-
ing start to become important (as will be discussed in more
detail below) as well as very close to � ¼ �1 where the
Luttinger model fails because the dispersion of the ele-
mentary excitations becomes quadratic. The fidelity
susceptibility as a function of � for various temperatures
as well as the extrapolated T ¼ 0 curve are shown in
Fig. 4(a). Comparing with the theoretical result (6) we
can also extract the momentum cutoff � [see Fig. 4(b)].
There is a clear divergence of �f at the first order phase

transition � ¼ �1. A fit of the extrapolated zero tempera-
ture curve shown in Fig. 4(a) gives �fð� * �1Þ �
0:017=ð�þ 1Þ1:26. This requires that the cutoff � vanishes
for � ! �1 because otherwise we would find from (6) a
divergence �1=ð�þ 1Þ2 as predicted in [10]. Indeed, a fit
of the extracted momentum cutoff as shown in Fig. 4(b)
yields �� 0:43ð�þ 1Þ0:65 and therefore �fð� * �1Þ �
0:013=ð�þ 1Þ1:35 which is consistent with the direct fit.
At the Kosterlitz-Thouless (KT) phase transition,

� ¼ 1, on the other hand, the behavior is different. Here
the finite-temperature data show that a maximum in �f at

�> 1 exists which shifts to smaller � with decreasing
temperature. The dependence of the cutoff � near � ¼ 1
seems to be consistent with ���1 þ ð1� �Þ� with a
constant �1 and an exponent � both greater than
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FIG. 2 (color online). TMRG data (dashed) and fits (solid
lines) for �fðTÞ in the ferromagnetic Ising regime. Inset:

TMRG data for the free fermion case (circles) compared to the
exact solution (dashed line) and the low-temperature asymptotics
(solid line).
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FIG. 3 (color online). TMRG data (dashed) and low-
temperature fits (solid lines) for �f with the slope fixed by (6).

The main figure (inset) shows data for� ¼ �0:8;�0:7; . . . ;�0:1
(� ¼ 0:1; 0:2; . . . ; 0:6) from top to bottom, respectively.
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zero. If this is indeed the case, we find from (6) that
�fð� & 1Þ ��1=½16�2ð1� �Þ�.

Finally, we want to discuss the temperature dependence
of �f right at the phase transitions. For � ¼ �1, shown in

Fig. 4(d), we find a divergence �f � 0:002ð�1ÞT�2:5ð�1Þ

where the error is determined by a variation of the fit
interval. As argued above, we also expect �fðTÞ to diverge
for T ! 0 and � ¼ 1. The numerical data, shown in
Fig. 4(c), however, do not easily allow us to extract the
low-temperature behavior. If we assume that lim�!1� ¼
�1 > 0 then we can calculate the temperature dependence
analytically as follows. At the isotropic point, umklapp
scattering is marginally irrelevant and the Luttinger
parameter has to be replaced by a running coupling
constant K ! 1þ gkðlÞ=2 where l ¼ lnT0=T with a scale

T0 of order J and gkðlÞ ¼ ð2K� � 2Þ= tanh½ð2K� � 2Þlþ
atanhðð2K� � 2Þ=g0kÞ� [18]. For T ¼ T0 we have l ¼ 0 and

gkð0Þ ¼ g0k while for T ! 0 it follows that l ! 1 andK ¼
1þ gk=2 ! K� where K� is the fix point value. For l large
we can neglect the part / g0k. We therefore obtain

�fð� ¼ 1; TÞ ¼ lim
�!1

�1

32ð1þ gk=2Þ2
�
@gk
@�

�
2

!T�T0 2�1

9�4
ln2ðT0=TÞ: (10)

While this prediction resolves some confusion about the
behavior of �f at a KT transition [2,8–10] it cannot be

reliably tested by comparing with the TMRG data. While
the term in (10) should dominate at very low temperatures,
subleading corrections might be of equal importance in the
temperature range accessible numerically.

To summarize, we have shown that the fidelity suscep-
tibility for the Luttinger model has a universal term linear
in temperature or inverse length. Apart from being relevant

for quantum phase transitions we believe that this result is
also important to analyze sudden quantum quenches.
Furthermore, we have introduced a numerical method to
calculate the finite-temperature fidelity in the thermody-
namic limit for any 1D quantum system with short range
interactions. Finally, based on a RG treatment, we have
predicted a ln2T divergence of �f at the KT transition in

the XXZ model.
J. S. thanks I. Affleck and F. Alet for valuable discus-
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