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Understanding the composition dependence of glass hardness is of critical importance for both

advanced glass applications and for revealing underlying fracture mechanisms. We present a topological

approach for quantitative prediction of hardness in multicomponent glassy systems. We show that

hardness is governed by the number of network constraints at room temperature and that a critical

number of constraints is required for a material to display mechanical resistance. Applied to a series of

soda lime borate glasses, the predicted values of hardness are in excellent agreement with experimental

measurements. Our approach is generally applicable to any network glass and demonstrates the

importance of accounting for the temperature dependence of the network constraints.
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Hardness is an important mechanical property of mate-
rials that is defined as the resistance of a solid object to
permanent deformation under pressure. The prediction of
hardness has attracted much interest [1–5] since it enables
a tailoring of material chemistry to yield enhanced me-
chanical properties. For example, the hardness of glass is a
crucial issue in the development of scratch-resistant glass
covers for personal electronic devices. However, direct
calculation of hardness from first principles has shown to
be too complex. To circumvent this problem, scientists
have sought materials with large bulk or shear moduli as
a surrogate for hardness [1,6], since these properties can be
evaluated directly by first principles [7]. However, there is
an intrinsic difference in scaling between hardness and the
bulk and shear moduli, so these previous efforts have not
been successful at predicting the composition dependence
of hardness. For example, the bulk modulus of HfN is as
high as 422 GPa, close to that of diamond (443 GPa), but
its hardness is only 17 GPa in contrast to diamond’s hard-
ness of 96 GPa [6]. Recently, Gao and coworkers have
successfully developed a semiempirical method for calcu-
lating the hardness of crystals by considering the strength
of each individual bond and the bond density [3]. Although
good agreement between calculated and measured values
has been obtained for various crystalline materials [8–10],
the method cannot be applied to glasses due to their high
degree of structural and topological disorder. Therefore,
clarifying the physical nature of hardness and enabling its
quantitative prediction in glasses remains a challenge of
the utmost importance.

Previous attempts have been made to correlate the hard-
ness of oxide glasses (a) with the properties of its individ-
ual constituents [11–13], (b) with structural parameters
such as the number of nonbridging oxygens (NBOs) [14],
and (c) with the glass transition temperature Tg [14,15].

However, more detailed information about the glass net-
work is required for accurate prediction of hardness [14].
In this Letter, we present an alternative topological ap-

proach for predicting the hardness of glass. This method is
based on an extension of the pioneering theoretical work of
Phillips and Thorpe [16–18], who introduced the idea of
treating the atomic structure of a glass as a network of
constraints. From subsequent experimental work,
Varshneya and co-workers [19,20] established an empirical
correlation between hardness and average coordination
number in a series of chalcogenide glasses. Here we extend
these previous studies by accounting for an explicit tem-
perature dependence of the topological constraints, which
enables an analytical derivation of the composition depen-
dence of hardness. Previously the temperature-dependent
constraint approach has been successfully applied to study
the composition dependence of liquid-state properties such
as Tg and fragility [21–23]. Here we extend the technique

to the glassy state at room temperature, showing excellent
quantitative agreement between predicted values of hard-
ness and experimental measurements. The temperature
dependence of constraints provides a natural explanation
for the difference in scaling behavior between liquid-state
properties at high temperature and glassy state properties at
low temperature.
We consider the xNa2OyCaO0:01Fe2O3ð0:99� x�

yÞB2O3 glass series as an example with which to validate
the model. This series contains an abundance of interesting
structural and topological features such as the impact of
network modifiers (Na, Ca) on boron coordination number.
The preparation of these glasses is described in detail
elsewhere [23]. For this study, we also prepared a B2O3

glass by melting H3BO3 at 1000
�C for 1 h. We determined

the Vickers hardness (HV) of the polished glasses by
microindentation (Duramin 5, Struers). The indentations
were performed at loads of 98 mN and 0.25 N for durations
of 5 s. The hardness of each sample was measured at 30
widely separated locations.
The topological modeling approach involves three basic

steps. First, we identify and count the number of distinct
network-forming species. By distinct, we refer to either
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chemically distinct or chemically similar but having differ-
ent short range order. The second step is to identify and
count the number of constraints associated with each spe-
cies. Third, the different constraints are ranked according
to their relative bond strengths (i.e., constraint onset tem-
peratures). Following our previous analysis [23], we con-
sider the following types of constraints (Fig. 1), in order of
decreasing strength: B-O and MNB-O linear constraints
(denoted ‘‘�’’ constraints, with an onset temperature of
T�), O-B-O angular constraints (�), and B-O-B angular
constraints (�). We also consider additional modifier rigid-
ity due to clustering effects (�). MNB denotes the network
modifiers that create NBOs and we consider two � con-
straints per NBO-forming sodium, whereas there are zero
� constraints for calcium. There are two � constraints at
each oxygen (both bridging and nonbridging), five � con-
straints per B4 to form a rigid BO4 tetrahedron, three �
constraints per B3 to keep the BO3 unit planar, and one �
constraint at each oxygen. The modifiers that convert boron
from B3 to B4 play a charge-compensating role only and
are not considered as part of the network. Here we employ
the discrete form of temperature-dependent constraint the-
ory [21,22], in which a constraint is considered floppy at
temperature above the onset temperature and rigid below
this temperature.

The composition dependence of the experimentally ob-
tained hardness is illustrated in Fig. 2. Hv increases with
increasing Na2O content up to around 25 mol% and then
decreases. For xþ y < 1=3, BO3 units are converted into
BO4 units as the Na2O content increases [23], which leads
to a higher density of the relatively strong B-O bonds, and
hence, an increase in hardness. For xþ y > 1=3, NBOs

start to form, leading to a decrease of HV with increasing
Na2O content due to the decrease in the number of rigid
bond constraints. The hardness ofB2O3 is 4:4� 0:5 GPa at
0.25 N, i.e., softer than the soda lime borate glasses.
An interesting result is obtained by comparing the mea-

sured values of hardness and Tg (Fig. 2). HV displays a

distinct peak around the composition where the fraction of
four-coordinated boron achieves a maximum, whereas
there is smaller change in Tg in the same region. It should

be mentioned that the maximum in Tgðx; yÞ does not cor-
respond to the maximum in the fraction of four-
coordinated boron. This points to the importance of includ-
ing the temperature dependence of network constraints
when calculating properties such as Tgðx; yÞ and HVðx; yÞ.
At high temperatures, there is ample thermal energy to
overcome the bond constraints, and hence the network is
floppy. As the temperature decreases, thermal energy is
reduced and more constraints become frozen in (Fig. 1). At
some temperature T0ðx; yÞ all of the floppy modes are lost.
The glass transition must always occur at temperatures
above this rigidity percolation temperature, i.e., Tgðx; yÞ>
T0ðx; yÞ, and consequently the low-temperature constraints
are irrelevant when calculating Tgðx; yÞ. However, since
hardness is measured in the glassy state at room tempera-
ture, i.e., for T < Tgðx; yÞ, the additional low-temperature

constraints are important (viz., the B-O-B angular � con-
straints) and must be considered in the model.
To predict the composition dependence of glass hard-

ness, we start from the idea that a certain critical number of
constraints (ncrit) must be present in order to produce a
connected network that is required for the material to dis-
play mechanical resistance, i.e., for hardness to become
nonzero. When the average number of atomic constraints is
less than this critical value (n < ncrit) the mechanical re-

0 10 20 30 40

0

1

2

3

O-

Na+ Na+

Na+

O

T > T
α

T
µ
 < T < T

α

T
β
 < T < T

µ

T
γ
 < T < T

β

 

A
to

m
ic

 d
eg

re
es

 o
f f

re
ed

o
m

[Na
2
O] (mol%)

T < T
γ

C
o

o
lin

g

  B-O

MNB-O

O
B

B B
O

O-  O-

FIG. 1 (color online). Temperature (T) and composition de-
pendence of the average number of atomic degrees of freedom in
the xNa2O0:1CaOð0:89� xÞB2O30:01Fe2O3 glasses. We have
considered the following types of constraints, in order of de-
creasing strength (i.e., onset temperature): B-O and MNB-O
linear constraints (with a constraint onset temperature of T�),
O-B-O angular constraints (T�), and B-O-B angular constraints

(T�). As discussed elsewhere [23], we also consider additional

modifier rigidity due to clustering effects around sodium (T�).

Right panel: local atomic structures.

FIG. 2 (color online). Composition dependence of Vickers
hardness (HV , plotted as squares) and glass transition tem-
perature (Tg, circles) for the xNa2O0:1CaOð0:89�
xÞB2O30:01Fe2O3 glasses. Inset: Correlation between HV and
Tg, including the data of the B2O3 glass. The Tg data points of

the soda lime borate glasses are taken from Ref. [23].
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sponse is liquidlike, i.e., there is no resistance to an incom-
ing indenter, and hence no hardness. When n > ncrit there
are enough constraints to make a rigid network that pro-
duces a solidlike mechanical response. A value of n ¼ 2
gives a network that is rigid along one dimension (i.e., rigid
chains, as in Se), whereas n ¼ 3 gives a network that is
rigid in three dimensions (fully isostatic). Graphite is an
example of a rigid 2D structure that has very weak inter-
actions in the third dimension to hold the layers together,
i.e., its n value should be slightly larger than 2.5. The
hardness of graphite is about 0.3 GPa [24], which is less
than 5% of the hardness of the borate glasses, even though
the bond strength of the individual C-C bonds in graphite
are stronger than those in diamond. The strength of the
layer-locking bond constraints in the third dimension must
therefore play a decisive role for hardness. We propose that
for a network to display mechanical resistance, it must be
rigid in at least two dimensions. Thus, we set ncrit ¼ 2:5
since this gives a network that is rigid in two dimensions of
the three-dimensional space. In other words, rigidity in
only one or two dimensions is not sufficient to resist the
applied stress during the hardness measurement. Finite
values of hardness are a result of the additional constraints
to form a three-dimensional network. We then assume that
hardness is directly proportional to the number of these
additional constraints, i.e., the constraints in excess of ncrit.
It should be emphasized that ncrit does not correspond to
the standard three-dimensional rigidity percolation thresh-
old, which occurs at an average coordination number of
hri ¼ 2:4 for chalcogenide systems [18] when all linear
and angular bond constraints are assumed to be intact. Here
we do not express ncrit in terms of an average coordination
number since the model is developed in finer detail, treat-
ing each network-forming species and bond constraint
individually rather than in an average sense.

For our specific model of the soda lime borate glasses,
we calculate the average number of atomic constraints at
room temperature (i.e., T < T�) by extending our previous

analysis [23] to low temperatures (where all the bond-
bending forces are intact). For convenience of calculation
all the stretching constraints can be assigned to O, and
application of the (2hri � 3) rule [16] for calculating bond-
bending constraints yields

nðx; yÞ ¼ 5NðB4Þ þ 3NðB3Þ þ 3NðOÞ þ 4x

2xþ y
NðMNBÞ;

(1)

where NðB4Þ, NðB3Þ, NðOÞ, and NðMNBÞ are the fractions
of four-coordinated boron, three-coordinated boron, oxy-
gen (including both bridging and nonbridging varieties),
and network modifiers (Na and Ca) that create nonbridging
oxygens, respectively, and the last term represents the �
constraints. We predict the hardness of the soda lime borate
glasses by

HVðx; yÞ ¼
�
dHV

dn

�
½nðx; yÞ � ncrit�

¼
�
dHV

dn

�
½nðx; yÞ � 2:5�: (2)

With this model, we find excellent agreement between
the predicted and measured values of hardness, as shown in
Fig. 3. Here the proportionality constant (dHV=dn) is
determined empirically and found to be dependent on the
load of the indenter. It should also be noted that the hard-
ness of pure B2O3 is over-predicted by the model. This is
likely due to the higher water content in the B2O3 glass
compared to the soda lime borate glasses [25], since B2O3

is extremely hygroscopic and the introduction of hydroxyl
groups is expected to break linear and angular constraints,
an effect not included in the current model of Eq. (1).
The success of our model implies that the hardness of a

glass can be quantitatively predicted from a basic knowl-
edge about its network topology, with only an unknown
proportionality constant (dHV=dn) that depends on the
load of the indenter. Constraint theory is therefore a power-
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FIG. 3 (color online). Measured Vickers hardness (HV) at
loads (P) of 98 mN and 0.25 N as functions of (a) the average
number of atomic constraints for T < T� (i.e., at room tempera-

ture) and (b) the concentration of Na2O in the soda lime borate
glasses. The solid lines represent model predictions using Eq. (2)
in the text with dHV=dn equal to 12.6 and 9.9 GPa for loads of
98 mN and 0.25 N, respectively.
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ful tool for efficiently exploring uncharted regions of com-
position space. Figure 4(a) shows a complete ternary dia-
gram for HVðx; yÞ in the xNa2OyCaOð1� x� yÞB2O3

system. Moreover, the remarkable linear relationship be-
tween room temperature constraints and hardness demon-
strates the importance of considering the additional low-
temperature constraints when evaluating glass properties
measured at room temperature. In other words, it is crucial
to account for the temperature-dependent nature of the
network constraints when predicting the scaling of prop-
erties such as Tg and HV with composition. This is illus-

trated by comparison of the ternary diagram for HVðx; yÞ
[Fig. 4(a)] with that for Tgðx; yÞ [Fig. 4(b)].

In summary, we have shown that the composition de-
pendence of glass hardness can be accurately predicted
using temperature-dependent constraint theory. A key fea-
ture of this modeling approach is that it is analytical and
hence avoids the costly computations associated with first
principles calculations. Constraint theory thus offers an

efficient tool for the design of new glass compositions
with desired values of properties such as hardness. The
success of our approach points to the importance of ac-
counting for the temperature dependence of the glass net-
work constraints Our results also imply that a glass
network must be rigid in at least two dimensions to have
a nonzero hardness. The accurate prediction of glass hard-
ness sheds light on the general physical nature of material
hardness. The temperature-dependent constraint approach
opens a new vista enabling prediction of glass hardness in
multicomponent composition spaces. The compositional
dependence of the proportionality constant dHV=dn
should be investigated in future work.
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FIG. 4 (color online). Model calculations of (a) HVðx; yÞ at a
load of 0.25 N using Eq. (1) and the model shown in Fig. 3 (black
solid line) and (b) Tgðx; yÞ [23] for the xNa2OyCaOð1� x�
yÞB2O3 system.
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