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Fracture in metals is controlled by material behavior around the crack tip where size-dependent

plasticity, now widely demonstrated at the micron scale, should play a key role. Here, a physical origin of

the controlling length scales in fracture is identified using discrete-dislocation plasticity simulations.

Results clearly demonstrate that the spacing between obstacles to dislocation motion controls fracture

toughness. The simulations support a continuum strain-gradient plasticity model and provide a physical

interpretation for that model’s phenomenological length scale. Analysis of a dislocation pileup under a

stress gradient predicts the yield stress to increase with increasing obstacle spacing, physically ration-

alizing the simulations.
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Engineering design of essentially all metallic compo-
nents used in structural applications, aircraft structures,
cars, bridges, pacemakers, hip implants, computer chip
packages, turbine disks, among others—relies heavily on
the long-standing framework of continuum plasticity.
However, many experiments now show that the plastic
flow stress in metals increases in material volumes on the
micron scale and below [1–7]. Micro- and nanoindentation
hardness of metals [1,2], the flow strength of nanocrystal-
line metals [3,4], nano- and micropillar [5], nanoasperities
[6], and thin films [7], all obey the mantra of ‘‘smaller is
stronger’’ and highlight the failure of conventional contin-
uum plasticity. The region around a crack tip is a micron-
scale material volume that arises in all larger-scale struc-
tures. In many cases continuum plasticity does not predict
growth of an initial crack, whereas cracks do grow in real
materials [8]. These issues have spurred new approaches to
plasticity such as phenomenological strain-gradient plas-
ticity (SGP) models [9–12] and discrete-dislocation mod-
els [13–15]. However, no clear physical identification of
material length scales controlling size dependence exists,
in spite of wide speculation on possible length scales [16].
Here, we use a new discrete-dislocation (cohesive-zone)
model to unambiguously demonstrate that the spacing
between obstacles to dislocation motion is one dominant
material length scale controlling the fracture toughness of
plastically deforming metals. Our results support one SGP
model [17] and provide a physical interpretation for that
model’s phenomenological length scale. We then show that
the behavior of dislocations in a ‘‘pileup’’ at an obstacle
under a stress gradient rationalizes our results and points in
a new direction for understanding some size effects in
plasticity.

The generic discrete-dislocation (DD) [cohesive-zone
(CZ)] methodology is described in the recent literature
[18–20]. Briefly, the method used here treats edge dislo-
cations as line defects with Burgers vector b, in a plane-
strain elastically isotropic (shear modulus �, Poisson’s

ratio �) single-crystal material with 3 slip systems oriented
at 60� relative to one another and parallel slip planes
spaced by 100b. To gain quantitative control over the
material description and to model fracture for realistic
material parameters requires new insights and new algo-
rithms. One key feature of our DD formulation is that the
motion of dislocations along their slip planes is impeded by
obstacles of strength �obs having average spacing Lobs, with
each ‘‘obstacle’’ physically representing an array of ob-
stacles in the third dimension [21]. We have recently
shown that the macroscopic plastic flow is controlled by
dislocation pileups at the obstacles so that the uniaxial
tensile yield stress is given by [21]

�Y ¼ 1

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�b

�ð1� �Þ
�obs

1:5Lobs

þ �2s

s
; (1)

where S is the Schmid factor. This obstacle-controlled
material model corresponds most closely to precipitation-
hardened materials with high strength and low strain hard-
ening rates, such as the commercially important Al-2XXX,
Al6XXX, Al-7XXX alloys and radiation-hardened metals.
One such material is Al-2024 (Al-Cu-Mg) which, as a
function of aging, has yield strengths in the range of
350–500 MPa, low hardening exponents (0.05–0.15), and
shows size effects that have been interpreted within an SGP
model to have gradient length parameters of 50–200 nm
[22] that are comparable to the operative lengths in our
study. Of most importance, Eq. (1) shows that the macro-
scopic yield stress �Y can be held fixed while the internal
length scale and obstacle strength can be varied, permitting
control of the material length scale Lobs.
To model fracture, we insert an initial crack into the

material described above and introduce a cohesive-zone
model along the crack line. A far-field mode-I stress in-
tensity load is applied and crack growth occurs naturally
when conditions near the crack allow the cohesive zone to
open. A schematic of the fracture test is shown in Fig. 1.
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The primary properties of any cohesive zone are the cohe-
sive strength �coh, typically 2–20 GPa, and the fracture
energy �0, typically a few J=m2. Continuum plasticity
models predict no crack growth in the regime �coh=�Y >
3–5 [23] which is typically exceeded in most realistic
materials and has thus driven the application of SGP or
DD treatments of the plasticity. Two characteristic lengths
associated with the cohesive zone are the critical opening
��0=�coh, typically 0.1 nm and thus comparable to the
dislocation Burgers vector, and the critical cohesive length,
���0=�

2
coh, typically 1 nm. Resolving the stress and strain

fields over the nanometer scale, capturing the interaction of
dislocations with a nanoscale cohesive zone, and modeling
crack growth over the several microns needed to establish
the material fracture toughness, all represent significant
numerical challenges that we have overcome by a host of
new algorithms to be reported elsewhere. Here, we fix the
material parameters as �0 ¼ 1:1 J=m2, �coh ¼ 7 GPa,
� ¼ 63:9 GPa, � ¼ 0:33, and b ¼ 0:25 nm to match the
values used in a recent SGP model of fracture [17]. Then,
for any fixed yield stress �Y , we vary the obstacle spacing
Lobs between 62.5 and 250 nm, and vary �obs accordingly.
Varying �Y is achieved by changing �obs with all other
parameters fixed. The yield stresses used here (600–
800 MPa) are somewhat higher than the Al-XXXX mate-
rials of practical interest so as to make the study computa-
tionally feasible and to make contact with SGP modeling.

The inset in Fig. 2 shows one example of the evolution of
the applied loading as a crack grows. Growth begins
around the elastic limit �0 but dislocation generation and
motion dissipate energy and stabilize the crack so that
increasing load is required to drive the crack further. At a
critical load that defines the fracture energy �c, the plastic
response of the material cannot prevent crack growth and
the crack grows with no further increase in load. Figure 2
shows that, for several values of yield stress, the normal-
ized fracture energy �c=�0 increases with decreasing ob-
stacle spacing Lobs with all other material and

computational parameters held fixed. We can thus unam-
biguously identify the obstacle spacing Lobs as the physical
material length scale that controls fracture toughness; this
is the main result of this Letter.
Figure 2 also shows the predicted fracture energy using

the Fleck-Hutchinson (FH) SGP model [23] for fracture
along a bimaterial metal-ceramic interface [17] using the
same CZ model parameters and �Y ¼ 700 MPa. The SGP
length parameter LFH has been scaled to best match the
simulation data; excellent agreement is obtained for LFH �
1
5Lobs. The SGP model predicts that the toughness depends

only on the ratio�coh=�Y , and so Fig. 2 also compares SGP
predictions for �Y=�coh ¼ 11:86 at �Y ¼ 700 MPa to our
simulations at �coh=�Y ¼ 11:66 and �Y ¼ 600 MPa;
agreement is again good. Capturing the simulation trend
with both material length scale and yield stress is a strong
validation of this SGPmodel. The correspondence between
our DD simulation, where the size effects in fracture arise
as a natural outcome of dislocation physics, and a phe-
nomenological continuum SGP model is the second main
result of this Letter.
We now provide more physical insight into the depen-

dence of the fracture toughness on obstacle spacing. Since
the yield stress is controlled by dislocation pileups at
obstacles [Eq. (1)], we analyze the behavior of pileups in
the presence of a stress gradient. Using a continuously
distributed dislocation density nðxÞ in the range� 1

2Lobs <

x< 1
2Lobs between two obstacles, and, for simplicity, zero

source strength �s ¼ 0 at x ¼ 0, the equilibrium pileup
density satisfies [24]

�appðxÞbþ �b2

2�ð1� �Þ
Z nðx0Þ

x� x0
dx0 ¼ 0;

�Lobs

2
� x � Lobs

2
: (2)

When the applied stress varies linearly, �appðxÞ ¼ �appð1�
�xÞ, with �app� the magnitude of the stress gradient,
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FIG. 1. Schematic of the top half of the symmetric DD[CZ] fracture simulation geometry. A remote stress intensity loading is
applied to a material that deforms via dislocation plasticity and that contains an initial crack and cohesive zone along the line ahead of
the crack. The nanoscale material model consists of dislocations, dislocation slip planes, dislocation sources (solid circles), and
dislocation obstacles (open circles). Lengths are in microns.
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Eq. (2) can be solved analytically for nðxÞ. The yield stress
�0

Y is the applied tensile stress (�app ¼ �app=S) at which

the dislocation at both obstacles attain or exceed the ob-
stacle strength, a condition used to obtain Eq. (1) [21].
Denoting the tensile yield stress with zero gradient as �Y ,
the yield stress �0

Y in the stress gradient is

�0
Y ¼ �Y

ð1–0:5�LobsÞ : (3)

For fixed gradient �, Eq. (3) predicts an increase in the
yield stress with increasing Lobs. The concept of ‘‘stress
gradient plasticity’’ embodied in Eq. (3) has broad impli-
cations for size-dependent plasticity that will be explored
separately. Applied to fracture, Eq. (3) predicts that, since
the stress gradient near the crack tip is larger than farther
away, the near-tip yield stress �0

Y controlling fracture is
larger than the nominal yield stress �Y and increases with
increasing Lobs. Since fracture toughness decreases with
increasing yield stress (Fig. 2), higher �0

Y leads to lower
fracture toughness with increasing Lobs, consistent with
Fig. 2. Figure 3 shows an averaged measure of the local
plastic strain around the crack tip in two simulations at the
same applied load level and same yield stress �Y but with
different Lobs. There is considerably less slip in the mate-
rial with larger Lobs, consistent with the model prediction
of a higher yield stress �0

Y . Quantitatively, if we linearize
the crack tip elastic field around the nearest typical dis-

location source at x0 ¼ ��1=2
s ¼ 150 nm away from the

crack tip, we obtain � ¼ 0:5=x0. Figure 4 shows that the
fracture toughness �c=�0 versus �coh=�

0
Y then collapses

onto a single curve. The lower toughness for materials with
larger Lobs is thus partially a reflection of the decreasing
value of �coh=�

0
Y . The importance of stress gradients near

the crack tip in controlling the size-dependent material
flow and fracture is the third main result of this Letter.
Some limitations of the DD method exist, such as the

restriction to plane-strain edge dislocations, no crack tip
dislocation nucleation and associated crack tip blunting,
and the absence of fully 3d mechanisms of hardening.
However, none of these features are explicitly contained
within the continuum SGP models either. We also note

FIG. 3 (color). Contours of averaged local plastic strain from DD simulations and crack opening profile (curves, displacement �10)
for materials with (a) Lobs ¼ 80 nm and (b) Lobs ¼ 250 nm, at the same load �=�0 ¼ 5:25 and tensile yield stress �Y ¼ 700 MPa.
Actual dislocations are shown as symbols, and the dislocation densities in the region shown are (a) 2� 1014=m2 and (b) 1� 1014=m2.
All lengths are in microns.
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FIG. 2 (color online). Normalized fracture energy �c=�0 ver-
sus dislocation obstacle spacing Lobs, for various values of the
tensile yield stress. Error bars show variations using three
statistically different realizations of dislocation obstacles and
sources in the simulation. Dashed lines: predictions of SGP
theory [17] with gradient length scaled to match simulations
(upper scale). Inset: growth of fracture toughness with crack
growth, due to evolution of dislocation plasticity, for one par-
ticular sample (Lobs ¼ 80 nm, �Y ¼ 700 MPa).
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that, for the precipitation-hardened materials to which our
material model is most applicable, 3d hardening effects
play a lesser role than in other materials such as pure
metals. Incorporating the features above is possible
[25,26] but with greatly increasing computational effort.
With these caveats, our results nonetheless show that DD
simulations are an effective computational laboratory for
guiding interpretation of SGP models.

In summary, a number of candidate material length
scales have been proposed as sources of size effects in
plasticity but no clear quantifiable evidence has emerged
from either experiment or prior theory. The DD virtual
laboratory allows for independent variation of internal
material parameters, control that is absent in continuum
theories and difficult to attain via experiments. Applied to
fracture, the model has revealed one definite, physical,
material length scale controlling fracture toughness in
metals and a simple analytic model aids in understanding
how this length scale operates to increase the material flow
stress near the crack tip, driving fracture.
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FIG. 4 (color online). Fracture toughness versus �coh=�
0
Y

where �0
Y is the near-crack-tip yield stress [see Eq. (3)], which

approximately collapses data from Fig. 2 onto a single curve
(dashed line to guide the eye).
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