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The existence of compactons in the discrete nonlinear Schrödinger equation in the presence of fast

periodic time modulations of the nonlinearity is demonstrated. In the averaged discrete nonlinear

Schrödinger equation, the resulting effective interwell tunneling depends on the modulation parameters

and on the field amplitude. This introduces nonlinear dispersion in the system and can lead to a

prototypical realization of single- or multisite stable discrete compactons in nonlinear optical waveguide

and Bose-Einstein condensate arrays. These structures can dynamically arise out of Gaussian or

compactly supported initial data.
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Introduction.—One of the most remarkable phenomena
occurring in nonlinear lattices is the existence of discrete
breathers which arise from the interplay among discrete-
ness, dispersion, and nonlinearity [1]. These excitations are
quite generic in nonlinear lattices with usual (e.g., linear)
dispersion and have typical spatial profiles with exponen-
tial tails. In the presence of nonlinear dispersion these
excitations (as well as their continuous counterparts) may
acquire spatial profiles with compact support and for this
reason they are known as compactons [2]. Unlike other
nonlinear excitations, compactons (having no tails) cannot
interact with each other until they are in contact, this being
an attractive feature for potential applications. Similarly to
discrete breathers, compactons are intrinsically localized
and robust excitations. The lack of exponential tails is a
consequence of the nonlinear dispersive interactions which
permit the vanishing of the intersite tunneling at compac-
ton edges. The difficulty of implementing this condition in
physical contexts has restricted until now investigations
mainly to the mathematical side. The development of
management techniques for soliton control, however, can
rapidly change the situation.

Periodic management of parameters of nonlinear sys-
tems has been shown to be an effective technique for the
generation of solitons with new types of properties [3].
Examples of the management technique in continuous
systems are the dispersion management of solitons in
optical fibers, which allows us to improve communication
capacities [4], and the nonlinearity management of 2D and
3D Bose-Einstein condensates (BECs) or optically layered
media, which provides partial stabilization against collapse
in the case of attractive interatomic interactions [5]. In
discrete systems the diffraction management technique
was used to generate spatial discrete solitons with novel
properties [6,7] which have been observed in experiments
[7]. The resonant spreading and steering of discrete sol-

itons in arrays of waveguides, induced by nonlinearity
management, was also investigated [8]. To date, the non-
linear management technique for nonlinear lattices has
been considered only in the limit of weak modulations of
the nonlinearity [9,10]. The interwell tunneling suppres-
sion has been discussed in Ref. [11] for the Bose-Hubbard
chain with time periodic ramp potential and in Ref. [12] for
a two-site Bose-Hubbard model with modulated in time
interactions. In both cases the tunneling suppression was
uniform in the system, and no apparent link with compac-
ton formation was established. The phenomenon has also
been recently observed in experiments of light propagation
in waveguide arrays [13] and in BECs in strongly driven
optical lattices [14].
The aim of the present Letter is to demonstrate the

existence of stable compacton excitations in the discrete
nonlinear Schrödinger (DNLS) system subjected to strong
nonlinearity management (SNLM), e.g., to fast periodic
time variations of the nonlinearity. To that effect, we use an
averaged DNLS Hamiltonian system to show that in the
SNLM limit the interwell tunneling can be totally sup-
pressed for field amplitudes matching zeros of the Bessel
function, introducing effective nonlinear dispersion which
leads to compacton formation. We show that these compact
structures not only exist in single and multisite realizations,
but they generically are structurally and dynamically stable
and can be generated from general classes of initial con-
ditions. These results should enable the observation of
discrete compactons in BECs and in nonlinear optical
systems, both being described by the DNLS equation.
Theory.—Consider the following lattice Hamiltonian:

H¼�X

n

�
�ðunu�nþ1þunþ1u

�
nÞþ1

2
½�0þ�ðtÞ�junj4

�
; (1)

with the coupling constant � quantifying the tunneling
between adjacent sites (wells), �0 denoting the on-site
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constant nonlinearity, and �ðtÞ representing the time-
dependent modulation. In the following we assume a
strong management case with �ðtÞ being a periodic, e.g.,
�ðtÞ ¼ �ðtþ TÞ, and rapidly varying function. As a pro-
totypical example, we use �ðtÞ ¼ �1

" cosð��Þ, with �1 �
Oð1Þ, " � 1, and � ¼ t=" denoting the fast time variable
and T ¼ 2�=� the period. The dynamical system associ-
ated with (1) is the well known DNLS equation [15]

i _un þ �ðunþ1 þ un�1Þ þ ½�0 þ �ðtÞ�junj2un ¼ 0; (2)

which serves, under suitable conditions [16], as a model for
the dynamics of BECs in optical lattices subjected to
SNLM (through varying the interatomic scattering length
by external time-dependent magnetic fields via a Feshbach
resonance), as well as for light propagation in optical
waveguide arrays (here the evolution variable is the propa-
gation distance and the SNLM consists of periodic space
variations of the Kerr nonlinearity).

The existence of compacton solutions can be inferred
from the fact that the averaged DNLS Hamiltonian (aver-
aged with respect to the fast time �) coincides with the
original time-independent Hamiltonian except for a rescal-
ing of the coupling constant which depends on the Bessel
function of the field amplitude. To show this, it is conve-

nient to perform the transformation [17] unðtÞ ¼
vnðtÞei�jvnðtÞj2 with � ¼ 1

�

R
t
0 dt�ð�Þ ¼ �1�

�1 sinð��Þ,
which allows us to rewrite Eq. (2) as

i _vn ¼ �vnðjvnj2Þt � �X � �0jvnj2vn; (3)

with X ¼ vnþ1e
i��þ þ vn�1e

i��� and �� ¼ jvn�1j2 �
jvnj2. On the other hand, ðijvnj2Þt ¼ ið _vnv

�
n þ vn _v�

nÞ ¼
i�ðv�

nX � vnX
�Þ, with the star denoting the complex con-

jugation. Substituting this expression into Eq. (3) and
averaging the resulting equation over the period T of the
rapid modulation, we obtain

i _vn ¼ i�jvnj2h�Xi � i�v2
nh�X�i � �hXi � �0jvnj2vn;

(4)

with h�i � 1
T

R
T
0 ð�Þd� denoting the fast time average. The

averaged terms in Eq. (4) can be calculated by means of the
elementary integrals he�i���i ¼ �J0ð���Þ, h�e�i���i ¼
�i�J1ð���Þ, with Ji being Bessel functions of order i ¼
0; 1 and � ¼ �1=�, thus giving

i _vn¼���vn½ðvnþ1v
�
nþv�

nþ1vnÞJ1ð��þÞ
þðvn�1v

�
nþv�

n�1vnÞJ1ð���Þ�
��½vnþ1J0ð��þÞþvn�1J0ð���Þ���0jvnj2vn: (5)

Note that parameters �1;�� 1, and the averaged equation
is valid for times t 	 1=�. This modified DNLS equation
can be written as i _vn ¼ �Hav=�v

�
n, with averaged

Hamiltonian

Hav ¼ �X

n

�
�J0ð��þÞ½vnþ1v

�
n þ v�

nþ1vn� þ �0

2
jvnj4

�
:

(6)

A comparison with Eq. (1) gives the anticipated rescaling
as � ! �J0ð��þÞ; a similar rescaling was recently re-
ported also for a quantum Bose-Hubbard dimer with
time-dependent on-site interaction [12].
It is worth noting that, while the appearance of the

Bessel function is intimately connected with harmonic
modulations, the existence of compacton solutions and
the lattice tunneling suppression is generic for periodic
SNLM. Thus, for example, for a two-step modulation of

the form �ðtÞ ¼ ð�1Þi�1 with i ¼ 0; 1 and i
2 < �< ðiþ1Þ

2 ,

we obtain for the first term in the averaged Hamiltonian (6)

�ðv�
nþ1vne

i�1�þ=4þv�
nvnþ1e

�i�1�þ=4Þsincð�1�þ=4Þ, where
sincðxÞ ¼ sinðxÞ=x; thus, in this case the suppression of
tunneling exists at zeros of the sinc function. We also
remark that for small ��þ the series expansion of J0 yields
the averaged Hamiltonian of the DNLS equation obtained
in Ref. [9] in the limit of weak management.
Exact compactons and numerics.—To demonstrate the

existence of exact stable compactons in the averaged sys-
tem, we seek for stationary solutions of the form vn ¼
Ane

�i	t for which Eq. (5) becomes

	An þ �0A
3
n þ �½Anþ1J0ð��þÞ þ An�1J0ð���Þ�

þ 2��A2
n½Anþ1J1ð��þÞ þ An�1J1ð���Þ� ¼ 0: (7)

As is well known, discrete breathers can be numerically
constructed with high precision by using continuation
procedures from the anticontinuous limit. The application
of this method to Eq. (7) gives, quite surprisingly, that such
modes cannot be continued past a critical point (of � 

0:32 for �	 ¼ �0 ¼ 1). The fact that the solutions cease
to exist before reaching the limit of resonance with the
linear modes (� ¼ �	=2) naturally raises the question of
what type of modes may be present in the system for larger
values of the coupling. In the following we show that, in
agreement with our theoretical prediction, the emerging
excitations are genuine compactons; e.g., they have vanish-
ing tails (rather than fast double exponential decaying tails
as in granular crystals [18]).
To search for compactly supported solutions, one needs

to consider [19] the last site of vanishing amplitude, de-
noted as n0 below. In the setting of Eq. (7), this directly
establishes the condition

J0ð�A2
n0þ1Þ ¼ 0 ) A2

n0þ1 ¼ 2:4048=�; (8)

which yields the solution (based on the first zero of the
Bessel function) for the ‘‘boundary’’ of the compactly
supported site. Then, for 	 ¼ ��0A

2
n0þ1, both the condi-

tion for compact support at n0 � 1 and the equation for
n ¼ n0 are satisfied. Hence Eq. (8) yields a single-site
discrete compacton. Numerical linear stability analysis
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illustrates that this solution is generically stable (see
Fig. 1). The bottom panel’s eigenvalues are associated

with perturbations growing as e
t. The absence of a
positive real part in 
 (i.e., of any 
’s in the right half
plane) is tantamount to linear stability. Similar results are
found for two-site compactons, which are either in-phase
(2nd column of Fig. 1) or out-of-phase (3rd column of
Fig. 1). The only thing that changes here is that, in or-
der to satisfy the equation at the nonvanishing sites, one
must have 	 ¼ ��� �0A

2
n0þ1 and 	 ¼ �� �0A

2
n0þ1,

respectively, for the in-phase and out-of-phase two-site
compactons (note from Fig. 1 that these solutions are
both stable).
With some additional effort, one can generalize these

considerations to an arbitrary number of sites. As a typical
example, a three-site compacton with amplitudes
( . . . ; 0; A1; A2; A1; 0; . . . ) will satisfy, in addition to the
‘‘no tunneling condition’’ J0ð�A2

1Þ ¼ 0, the constraints

	A1þi þ 2ðiþ 1Þ��A2
1þiA2�iJ1½�ðA2

2�i � A2
1þiÞ� þ �0A

3
1þi þ �A2�iJ0½�ðA2

2�i � A2
1þiÞ� ¼ 0; i ¼ 0; 1; (9)

which can be easily solved to yield a solution as the one
shown in the 4th column of Fig. 1. We find that even such
more complex solutions (which are highly unstable in
DNLS [15]) are dynamically robust herein. This departure
from the standard DNLS model can be rationalized by the
fact that in the latter case the instability is mediated by the
intersite tunneling or coupling [15], which for our special
compacton solutions vanishes, hence endowing the solu-
tions herein with dynamical stability.

The dynamical stability of the solutions of Fig. 1 with
respect to the original DNLS model in Eq. (2) has been
investigated in Fig. 2 for the one-site (left panels) and the
two-site, in-phase (right panels) modes (similar findings
were obtained for other modes). The top panels show the
space-time contour map of the solution modulus, while the
bottom panels illustrate the deviation from the initial con-
dition. The structural stability of these compactons was
ensured by adding a uniformly distributed random pertur-
bation of small amplitude to the original solution. Both for
the averaged equation (not shown here) and for the original

system (see Fig. 2), the relevant perturbation stays bounded
and never exceeds 2% of the solution amplitude. The
waveforms remain remarkably localized in their compact
shape (after a transient stage of shedding off small ampli-
tude ‘‘radiation’’), and their tails never exceed an Oð�Þ
correction, as theoretically expected for time scales of
Oð1=�Þ. Notice that for Eq. (2), �ðtÞ ¼ 1þ 1

� cosðt=�Þ,
with � ¼ 0:1, was used. However, if one departs from the
regime of validity of the averaging and from the SNLM
limit, interesting deviations from the above behavior (and
stability) arise. An example of this is shown in the left
panels of Fig. 3. In this case, the three-site solution was
initialized in Eq. (2) with � ¼ 0:1 in the top panel, while
� ¼ 0:025 in the bottom one. In the latter, the above argued
robustness of the averaged modes was observed. Yet, in the
former one, the apparent lack thereof was clearly due to the
use of an � outside of the regime of applicability of the
averaging approximation. Nevertheless, the resulting evo-
lution has two interesting by-products. First, it confirms the
general preference of the system towards settling in com-
pact modes, since the evolution asymptotes to an essen-
tially single-site solution. Second, the larger amplitude of
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FIG. 1 (color online). Typical examples for � ¼ 0:5, � ¼ 1 of
compact localized mode solutions of Eq. (7) (top panels) and of
the plane ð
r; 
iÞ of their linearization eigenvalues 
 ¼ 
r þ
i
i. 1st column: on-site; 2nd column: intersite, in-phase; 3rd
column: intersite, out-of-phase; 4th column: three-site.
Remarkably, all solutions are dynamically stable.
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FIG. 3 (color online). Left panel: Dynamical evolution for � ¼
1 of a perturbed three-site compacton for � ¼ 0:1 (top, leading to
single-site evolution) and for � ¼ 0:025 (bottom). Right panel:
Examples of stable large amplitude compact modes with one,
two (in-phase and out-of-phase), and three sites emerging from
the second zero of the Bessel function.
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FIG. 2 (color online). Space-time evolution of a one-site (left
column) and a two-site (right column) compacton solution as
obtained from direct numerical integrations of Eq. (2). Top
panels in each case show the square modulus of the solution
itself (large amplitude color bar), while bottom panels (small
amplitude color bar) show the deviation from the exact solution
of Eq. (7) taken as the corresponding initial condition.
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this solution in comparison to those of Fig. 1 led us to
explore the possibility of compactly supported modes as-
sociated with higher zeros of the Bessel function in the
right panels of Fig. 3. Remarkably, such solutions again not
only exist but are stable in all the cases shown in the figure
(numerical linear stability graphs are omitted). This indi-
cates the existence of an infinite sequence of such modes,
connected with the zeros of the Bessel structure of the
(averaged) tunneling.

To address the robust emergence of such compact ex-
citations, we used both few-sites uniform and even
Gaussian-type excitations. While in the former (experi-
mentally realizable; see, e.g., [20]) case discrete compac-
tons can be expected, remarkably, in either case such
excitations can result. A typical example is shown for a
Gaussian initial profile in the left panel of Fig. 4, which
yields a single-site compact mode differing in amplitude
by more than 2 orders of magnitude between the central
site and its nearest neighbor and showing no signs what-
soever of an exponential tail, even in a semilog plot. In the
right panel of Fig. 4, a multisite compacton generated from
uniform compactly supported data is depicted. We see that
the amplitude reduces by 5 orders of magnitude three sites
away from the central peak.

Let us estimate the parameters for the experimental
observation of such modes, e.g., for the case of the 7Li
condensate in a deep optical lattice. The Feshbach reso-
nance in Li occurs at the value of external magnetic field
B ¼ 720 G. By varying the magnetic field around this
value, we can easily obtain variations of the scattering
length as1 around the order of the background scattering
length as0 yielding �1=�0 � 10. In the deep optical lattice
with V0 > 10ER, where V0 is the depth of the lattice and
ER ¼ @

2k2=2m is the recoil energy, the Gross-Pitaevskii
equation can be mapped into the DNLS equation (2) [16].
Thus, by changing periodically in time the magnetic field

between these values with the frequency�� 10!R, where
!R ¼ ER=@, we can generate matter wave compactons.
Conclusions.—We predicted the existence of discrete

compactons in the DNLS equation with strong nonlinearity
management. We found stable single- and few-site com-
pactons of odd and even parity. They are robust and can be
generated from different classes of initial conditions. Such
structures may be observable in experiments on BECs in
deep optical lattices with periodically varying scattering
length and arrays of nonlinear optical waveguides with a
variable Kerr coefficient along the propagation distance.
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