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Lack of memory (locality in time) is a major limitation of almost all present time-dependent density-

functional approximations. By using semiclassical dynamics to compute correlation effects in the time

propagation of the density matrix, we incorporate memory, including initial-state dependence, as well as

changing occupation numbers, and predict more observables in strong-field applications.
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The impact of time-dependent density-functional theory
(TDDFT) [1,2] on calculations of excitation spectra and
response in molecules and solids is evident in its increasing
use. Aweak perturbation is applied to the system beginning
in its ground state, and usually the exchange-correlation
(xc) effects are treated with a ground-state (adiabatic)
approximation. Generally the results are usefully accurate,
but specific cases (e.g., charge-transfer excitations, optical
response of solids, etc.) require improved approximations
undergoing intense research.

In principle, TDDFT also applies beyond the linear-
response regime, but success has been slower. There are
three main reasons. First, many observables of interest are
not simply related to the time-dependent one-body density:
in addition to the approximation for the xc functional,
new approximate ‘‘observable functionals’’ are needed to
extract the quantity of interest from the Kohn-Sham (KS)
system. Even with an exact xc potential, they would remain
elusive. These include double-ionization probabilities and
momentum-densities, and naive approximations to these
generally fail [3,4]. Second, lack of memory dependence
in the usual xc approximations has been shown to be often
far more problematic than in the linear-response regime
[5,6]. The exact functional depends on the history of the
density as well as on the initial state. Different initial states
lead to fundamentally different xc potentials [6]. But no
approximation today has initial-state dependence, almost all
neglect history dependence, and all violate an exact condi-
tion on memory dependence, derived in Ref. [7]. Third, a
particularly severe difficulty is encountered when a system
starting in a wave function dominated by a single Slater
determinant (SSD), evolves to a state that fundamentally
needs at least two SSDs to describe it. This is the time-
dependent (TD) analog of ground-state static correlation,
and arises in electronic quantum-control problems [7,8], in
ionization [4], and in coupled electron-ion dynamics [9].
The TD KS system evolves the occupied orbitals under a
one-body Hamiltonian, remaining in an SSD: the KS one-
body density matrix is always idempotent (even with exact
functionals), while, in contrast, that of the true system
develops eigenvalues [natural occupation numbers (ONs)]

far from 0 or 1 in these applications. The exact xc potential
and observable functionals consequently develop compli-
cated structure that is difficult to capture in approximations.
For example, in Ref. [4], a simple model of ionization in
two-electron systems showed that the momentum distribu-
tion computed directly from the exact KS system contains
spurious oscillations due to using a single, necessarily
delocalized orbital, a nonclassical description of the essen-
tially classical two-electron dynamics. Ref. [7] discussed the
unusual and nonintuitive xc potentials that arise in certain
electronic quantum-control problems, e.g., He 1s2 ! 1s2p.
If the overlap between the initial and final states is targeted,
the maximum that can be achieved is 0.5 [8], while close to
0.98 is achieved for the true interacting problem.
Recent pioneering strides in TD density-matrix func-

tional theory (TDDMFT) show this alternative approach
can overcome some of the challenges of adiabatic TDDFT
in linear response [10], e.g., adiabatic TDDMFT function-
als were shown to capture charge-transfer excitations well.
All one-body observables are directly obtained. However,
adiabatic functionals bootstrapped from the usual ground-
state DMFT disappointingly cannot change ONs [11]
unless some unusual structural changes are made in the
functional form [10]. The first real-time TDDMFT calcu-
lations [12], use an extra energy-minimizing procedure at
each time that results in time-dependent ONs.
In this Letter, we present a new approach to correlation in

electron dynamics that makes a significant step in solving
all the problems mentioned above. We work directly with
the one-body density matrix in real time and use a semi-
classical approximation for the correlation term in the
equation of motion while evaluating the other terms exactly
quantum-mechanically. All one-body observables are ob-
tained directly. It is the first density-matrix (or density-)
functional approach that has initial-state dependence, with
memory naturally carried along by the classical trajectories,
and the first real-time approach that can change ONs sig-
nificantly away from the adiabatic limit. A heirarchy of
semiclassical approximations for the correlation term is
discussed, decreasing in accuracy but also in computational
cost. On the first level, correlation is obtained exactly to
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Oð@Þ, while at the lowest level quantum mechanics enters
only in the determination of the initial state, with the
dynamical correlation obtained via pure classical evolution.
Despite its simplicity, we demonstrate via a simple example
that this latter approach yields time-dependent ONs.

Semiclassics lies at the very foundations of the earliest
density-functional theories that predate the rigorous DFT
of Refs. [13]. Recently, its semiclassical origins have
been reawakened [14]. Until now, semiclassical methods
have not been applied to functional development in
TDDFT nor in TDDMFT, although mean-field semiclassi-
cal methods have been used to approximate KS dynamics,
e.g., [15]. TDDMFT may equally be viewed as a ‘‘phase-
space-density-functional theory’’, as reflected, for
example, in the relation between the one-body Wigner
function wðr;p; tÞ and the spin-summed one-body
density matrix �1ðr0; r; tÞ ¼ N

P
�1...�N

R
d3r2 . . . d

3rN�
��ðr0�1; x2 . . . xN; tÞ�ðr�1; x2 . . . xN; tÞ: wðr;p; tÞ ¼R
d3y�1ðr-y=2; rþ y=2; tÞeip�y=ð2�Þ3. [Here xi ¼ ðri; �iÞ

indicates spatial and spin coordinates, and atomic units are
used throughout]. This observation suggests the utility of
semiclassical approaches, as we shall see shortly.

All the one-body terms in the equation of motion for �1

can be treated exactly, and for spin-unpolarized systems:

i _�1ðr0;r;tÞ¼ ð�r2=2þvðr; tÞþr02=2

�vðr0; tÞÞ�1ðr0;r;tÞþ
Z
d3r2feeðr;r0;r2Þ

�
�
nðr2; tÞ�1ðr0;r;tÞ�1

2
�1ðr0;r2;tÞ�1ðr2;r;tÞ

�

þ
Z
d3r2feeðr;r0;r2Þ�2Cðr0;r2;r;r2;tÞ; (1)

where we have decomposed the second-order density ma-
trix, �2ðr0; r02; r; r2; tÞ ¼ NðN � 1ÞP�1...�N

R
d3r3 . . . d

3rN
��ðr0�1; r

0
2�2; x3 . . . xN; tÞ�ðr�1; r2�2; x3 . . . xN; tÞ ¼

�1ðr01; r1; tÞ�1ðr02; r2; tÞ � �1ðr01; r2; tÞ�1ðr02; r1; tÞ=2 þ
�2Cðr01; r02; r1; r2; tÞ: the first term is the noninteracting,
uncorrelated product, the second term takes care of the
Pauli principle at the uncorrelated level, and the third term
is the correlation component, whose functional depen-
dence on �1 is unknown. In TDDMFT, �2ðr0; r2; r; r2; tÞ
is to be approximated as a functional of �1 and the initial
interacting state �0, �2½�1;�0�. We have defined the
electron-interaction kernel feeðr; r0; r2Þ ¼ 1=jr� r2j �
1=jr0 � r2j. There is a one-to-one mapping between
vðr; tÞ and �1 (or wðr;p; tÞ) for a given initial state
�0ðr1 . . . rNÞ provided the TD external potential vðr; tÞ
that the N-electron system evolves in is local (multiplica-
tive) [16]. This follows directly from the Runge-Gross
theorem, and also a 1-1 mapping holds for external vector
potentials [4], but we will focus on scalar potentials at
present. An immediate advantage of replacing the
coordinate-space density with the density matrix as basic
variable is that it directly gives the expectation value of any
one-body operator: no additional observable functionals
are needed for momentum distributions or kinetic energies,

for example. There is no KS equivalent: because of idem-
potency of noninteracting density matrices, it is impossible
for a noninteracting system of electrons to have the same
phase-space density as a system of interacting electrons.
Ideally, the approximation made for �2½�1;�0� captures

correlation, memory-dependence including initial-state
dependence, and, most importantly for the quantum-
control and ionization applications mentioned earlier, yield
time-dependent ONs, fiðtÞ, defined via the natural orbital
decomposition �1ðr; r0; tÞ ¼

P
ifiðtÞc iðr; tÞc �

i ðr0; tÞ.
The TDDMFT developments have so far been predomi-

nantly within linear response [10], investigating adiabatic
functionals for �2. Our approach computes the correlation
component of �2 semiclassically, focusing on full dynam-
ics (not linear response). We propagate Eq. (1) treating all
terms except the last exactly quantum-mechanically. The
last term is treated as a driving term: we approximate
�2C � �SC

2C , evaluated separately via semiclassical dynam-

ics, calculated from running classical trajectories in the
N-body interacting phase-space.
Semiclassical methods construct an approximate

quantum propagator utilizing classical trajectory informa-
tion alone. Although there are a variety of forms, the
essential structure is a sum over classical trajectories
P

cl:traj:CiðtÞeiSiðtÞ=@, where SiðtÞ is the classical action along
the ith trajectory, and the prefactor CiðtÞ captures fluctua-
tions around the classical path. Semiclassical approaches
capture quantum effects such as interference, zero-point
energy, tunneling (to some extent), while generally scaling
favorably with system size. Based on classical trajectories,
intuition about the physical mechanisms underlying the
dynamics can be gained. Although mostly applied to
nuclear dynamics in molecules, there have been applica-
tions to electrons [17].
Semiclassical formulae have been derived both from

largely intuitive arguments (e.g., Ref. [18]), as well as
from careful rigorous asymptotic analyses of the quantum
propagator (see, e.g., Refs. [19]) that satisfy TDSE to order
@. Miller [20] showed the equivalence of different
semiclassical representations within stationary-phase
evaluation of the transformations. The most popular is
the Heller-Herman-Kluk-Kay [18,21,22], which is a
‘‘semiclassical rigorization’’ of Heller’s frozen Gaussian
approach, uniformly solving the TDSE to Oð@Þ. It is a sum
over initial points in (N body) phase space, z0 � ðr0;p0

Þ �
ð½r1ð0Þ;p1ð0Þ� . . . ½rNð0Þ;pNð0Þ�Þ:

ðe�iĤtÞSC ¼ ð2�Þ�M
Z

d2Mz0jztiCtðz0ÞeiStðz0Þhz0j; (2)

where: zt ¼ ½rðtÞ;pðtÞ� obeys Hamilton’s equations

_r ¼ pðtÞ; _p ¼ �rHðr;p; tÞ; (3)

M ¼ 3N is the dimensionality of configuration space, and
Sðz0; tÞ is the classical action,

R
tðT � VÞdt, for a trajectory

which begins at the phase space point (r0, p0
), reaching

point (rt, pt
) at time t. The state jzi is a product of coherent
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states for each coordinate, labeled by their centers in

phase-space: hxjq; pi ¼ ð��Þ1=4 expð� �ðx� qÞ2=ð2Þ þ
ipðx� qÞÞ, where � is a chosen width parameter. The
preexponential determinantCtðz0Þ accounts for fluctuations
about the classical paths: when � is chosen identical for all

particles, Ctðz0Þ ¼ j 12 ð@rt@r0
þ @pt

@p0
� i2� @rt

@p0
þ i

2�
@pt

@r0
Þj1=2.

Typically, the phase-space integral is performed via
Monte-Carlo integration, with initial conditions weighted
by the initial wave packet hz0j�0i. Because of the evalu-
ation of the prefactor C, the numerical effort per trajectory
scales as N3; methods which neglect this scale as N but at
the cost of losing accuracy and semiclassical rigor. While

Monte-Carlo integration scales as
ffiffiffiffi
N

p
for positive inte-

grands, the phase-space integral can be difficult to converge
due to its oscillatory nature, especially for many degrees of
freedom and chaotic dynamics, and so various sophisticated
integral-filtering techniques, or ‘‘forward-backward’’ (FB)
methods [23] have been formulated, allowing calculations
for up to 100 degrees of freedom [24].

Applying Eq. (2) to propagate �, then computing �SC
2

via integration constitutes our highest level of semiclassi-
cal heirarchy for correlation. We compute

�SC
1 ðr0; r; tÞ ¼ 1

N � 1

Z
�SC
2 ðr0; r2; r; r2; tÞd3r2 (4)

and

�SC
2Cðr0;r2;r;r2; tÞ¼�SC

2 ðr0;r2;r;r2; tÞ
��SC

1 ðr0;r; tÞnSCðr2; tÞ
þ�SC

1 ðr0;r2; tÞ�SC
1 ðr2;r; tÞ=2; (5)

where nSCðr2; tÞ is the one-body density, the diagonal of
Eq. (4). Finally, this �SC

2C is input into Eq. (1) as a driving

term. At this level, correlation effects are exact to Oð@Þ,
while all other effects are quantum-mechanically exact.
Difficulties with converging the highly-oscillatory integral
in Eq. (2), and the N3 scaling of the prefactor, render this
impractical for more than a few electrons, to the point
where, for many cases, little computational benefit is
gained over running the full quantum mechanics.

Instead, in a FB fashion, we can take advantage of
significant phase cancellation between the propagation of
�� and that of � in calculating �SC

2 . Applying the semi-

classical propagator Eq. (2) to both the � and �� appear-
ing in �2, and doing some intermediate integrations via
stationary phase, the second level in our heirarchy is

�SC
2 ðr0; r2; r; r2; tÞ ¼ NðN � 1Þ

ð2�Þ3Nþ2

Z
d2Mz0d

3z01;td
3z02;t

� eiðSðtÞ�S0ðtÞÞGðr0; r; r2; z01;tz02;tz1;tz2;tÞ
� h�0jz00ihz0j�0i; (6)

where z00 ¼ ðq0
1;tð�tÞ;p0

1;tð�tÞ;q0
2;tð�tÞ;p0

2;tð�tÞ; r3;0;
p3;0 . . . rN;0;pN;0Þ and Gðr0; r; r2; z01;tz02;tz1;tz2;tÞ ¼ hr0jz01;ti�
hr2jz02;ti�hrjz1;tihr2jz2;ti. That is, an initial phase-space

point q
0
, p

0
is classically evolved for time t, when the

phase-space points of the first two particles are shifted to
(q0

t1, p
0
t1, q

0
t2, p

0
t2), before all particles evolve back to time

zero. There is therefore significant cancellation of phase
(SðtÞ � S0ðtÞ), that would generally result in good conver-
gence of Monte Carlo evaluation of this phase-space
integral, even for many electrons. Further, the product of
the numerically expensive prefactors has been reasonably
approximated to 1 for many electrons. The true initial state
appearing in Eq. (6) is in practise approximated by a few
(KS) SSD’s, or by a high-level wave function calculation,
if a stationary state. Equations (4) and (5) are then used to
extract the semiclassical correlation component �SC

2C , cap-

turing interference and zero-point energy effects, that is
then input into Eq. (1) as a driving term.
An even more simple prescription is obtained by

neglecting the phase and prefactor altogether: this yields
the quasiclassical Wigner method [25], and can also be
shown to result from a linearization of the FB [23]:

wQC
N ðr;p; tÞ ¼ wNðrð�tÞ;pð�tÞ; t ¼ 0Þ (7)

from which, by integration, a quasiclassical approximation
to the correlation component of �2 is obtained, and inserted
as a driving term into Eq. (1). This represents the lowest
level of our semiclassical heirarchy: in computing the
correlation, while scaling classically with the system
size, all interference is lost, quantum mechanics enters
only in determining the initial Wigner function, and
when the wave function becomes delocalized, this approxi-
mation degrades. Nevertheless quasiclassical methods
(even of the entire dynamics) have proven useful in ana-
lyzing electron ionization distributions [26].
Our prescription thus results in a semiclassical approxi-

mation for the correlation component to �2 in the equation
of motion Eq. (1) for �1, all other terms of which are
treated exactly quantum mechanically. But can our
approach lead to time-dependent ONs? To illustrate this,
we consider a simple model system, the two-electron

Moshinsky atom [27]: Ĥ ¼ � 1
2 ðr2

1 þr2
2Þ þ kðtÞ

2 �
ðr21 þ r22Þ þ �ðr1 � r2Þ2. Although a poor model of a real
atom, its purpose here is simply to demonstrate that even
the lowest level quasiclassical approximation to correlation
is able to capture changing ONs. Its harmonic nature
makes it exactly solvable, and we apply a simple sinusoidal
force constant, kðtÞ ¼ 1� 0:05 sinð2tÞ, that encourages
population transfer to the first accessible excited state (an
excitation in the center of mass coordinate), from the initial
ground state, a spin singlet. Moreover, due to its harmonic
nature, the quasiclassical and semiclassical propagations
equal the exact quantum propagation [25]. Figure 1 plots
the ONs, fiðtÞ, of the spatial natural orbitals, obtained from
diagonalizing �1ðr; r0; tÞ at each time t. In striking contrast,
TDDMFT, with the usual adiabatic approximations would
yield constant occupation numbers. Aside from the signifi-
cance in quantum-control problems, lack of time-
dependent ONs impacts observables; e.g., the momentum
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distributions are qualitatively incorrect [4]. How well our
approach works for realistic systems is currently being
tested; this example, however, illustrates that it certainly
does not suffer from the inability to change ONs as existing
schemes do. In our scheme, ONs generally will change
correctly in the quasiclassical or semiclassical sense, de-
pending on the level in the heirarchy used; in the latter,
they will be correct to order @.

In summary, we have presented a semiclassical approach
to correlation in TDDMFT, that (i) naturally captures
history-dependence and initial-state dependence (for the
first time) at the semiclassical level, as memory is
carried along with the classical trajectories composing
�SC
2 , (ii) directly yields all one-body observables, and

(iii) changes occupation numbers. Correlation is treated
semiclassically, while all other terms determining the den-
sity matrix are exact. The highest semiclassical level yields
correlation exactly toOð@Þ, but will be impractical in many
cases; the approximate semiclassical treatment [Eq. (6)]
will still capture quantum many-body effects in a com-
putationally efficient way. The simplest approximation
[Eq. (7)] scales classically, so is well worth investigating,
especially since the other terms in the equation of motion
for �1 are treated exactly. As there is no guarantee of
N representability of �1 being preserved in the semiclas-
sical dynamics [at least beyond Oð@Þ], tests on realistic
systems are necessary. Treating many of the challenging
aspects of approximate density-functional methods
described earlier, it is a promising approach to study elec-
tron dynamics in strong fields.
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FIG. 1. Occupation numbers for the model system: quasiclass-
ical correlation shown is exact, while the usual adiabatic
TDDMFT approximations yield constant straight lines.
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