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We prove that, in the large-dimension limit, the high-density correlation energy E,. of two opposite-spin
electrons confined in a D-dimensional space and interacting via a Coulomb potential is given by
E,~ —1/(8D?) for any radial confining potential V(r). This result explains the observed similarity of
E. in a variety of two-electron systems in three-dimensional space.
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Understanding and calculating the electronic correlation
energy is one of the most important and difficult problems
in molecular physics. In this pursuit, the study of high-
density correlation energy using perturbation theory has
been particularly profitable, shedding light on the physi-
cally relevant density regime and providing exact results
for key systems, such as the uniform electron gas [1] and
two-electron systems [2]. The former is the cornerstone of
the most popular density functional paradigm (the local
density approximation) in solid-state physics [3]; the latter
provide important test cases in the development of new
explicitly correlated methods [4,5] for electronic structure
calculations [6]. Atomic units are used throughout.

The high-density correlation energy of the heliumlike
ions is obtained by expanding both the exact [7] and
Hartree-Fock (HF) [8] energies as a series in 1/Z, yielding

E(Z,D,V) = EYD,V)Z* + EV(D, V)Z + E?(D, V)

E®(D, V)
+ — 1 ...,
V4

Eue(Z, D, V) = EO(D, V)22 + EN(D, V)Z + EZ(D, V)

)

(3)
+M+.“’ (2)
VA

where Z is the nuclear charge, D is the dimension of the
space, and V is the external Coulomb potential. Equations
(1) and (2) share the same zeroth- and first-order energies
because the exact and the HF treatment have the same
zeroth-order Hamiltonian. Thus, in the high-density
(large-Z) limit, the correlation energy is

EX (D, V) = limE(Z,D, V)
= lim[E(Z D, V) = Ege(Z. D, V)]

= E?(D, V) — EZ(D, V). 3)

Despite intensive study [9,10], the coefficient E® (D, V)
has not yet been reported in closed form. However, the
accurate numerical estimate

E? = —0.157 666 429 469 14 “)
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PACS numbers: 31.15.ac, 31.15.ve, 31.15.xp, 31.15.xr

has been determined for the important D = 3 case [10].
Combining (4) with the exact result [8]

9 3 13
Egl): =—In- —

32 4 432 )

yields a value of

E? = —0.046 663253999 48 (6)

for the heliumlike ions in three-dimensional space.

In the large-D limit, the quantum world reduces to a
simpler semiclassical one [I11] and problems that defy
solution in D = 3 sometimes become exactly solvable. In
favorable cases, such solutions provide useful insight into
the D = 3 case and this strategy has been successfully
applied in many fields of physics [12,13]. Indeed, just as
one learns something about interacting systems by study-
ing noninteracting ones and introducing the interaction
perturbatively, one learns something about D = 3 by
studying the large-D case and introducing dimension
reduction perturbatively.

Singularity analysis [14] reveals that the energies of
two-electron atoms possess first- and second-order poles
at D = 1, and that the Kato cusp [15,16] is directly re-
sponsible for the second-order pole. In our previous work
[17,18], we have expanded the correlation energy as a
series in 1/(D — 1) but, although this is formally correct
if summed to infinite order, such expansions falsely imply
higher-order poles at D = 1. For this reason, we now
follow Herschbach and Goodson [19,20], and expand
both the exact and HF energies as a series in 1/D.
Although various possibilities exist for this dimensional
expansion [14,21-23], it is convenient to write

ECO(V) ECO(V
V) [ EZ°V)

E@(D,V) = o o3 (7)
(2,0) (2,1)
Efp (V) | Efp (V)
2
EGi(D, V) = S e R e O
EFO) EF(V
vy =E W EWV)

D? D3
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where
ECO(V) = ECO(V) — EZO(v), (10)
E2V(v) = E2V(V) — EZD(v). (11)

Such double expansions of the correlation energy were
originally introduced for the heliumlike ions, and have lead
to accurate estimations of correlation [24,25] and atomic
energies [26,27] via interpolation and renormalization
techniques. Equations (7)—(9) apply equally to the 'S
ground state of any two-electron system confined by a
spherical potential V(r).

For the heliumlike ions, it is known [19,20,28] that

163

(2.1) —
EZ7 (V)= ——,
V) 384

EROW) = - o, (12)
and we have recently found [17] that EPO(V) takes the
same value in hookium (two electrons in a parabolic well
[29-32]), spherium (two electrons on a sphere [33-36]),
and ballium (two electrons in a ball [18,37,38]). In con-
trast, we found that E(Cz’l)(V) is V dependent. The fact that
the term E(CZ’O) 18 invariant, while E?‘l) varies with the
confinement potential allowed us to explain why the
high-density correlation energy of the previous two-
electron systems are similar, but not identical, for D = 3
[17,18]. On this basis, we conjectured [17] that

1 Cw)

E(cz)(D, V)~ — Y

13)

holds for any spherical confining potential, where the
coefficient C(V) varies slowly with V(r).

In this Letter, we prove that EE.Z’O) is indeed universal,
and that, in the large-D limit, the high-density correlation
energy of the 'S ground state of two electrons is given by
(13) for any confining potential of the form

V(r) = sgn(m)r"v(r), (14)
where v(r) possesses a Maclaurin series expansion
v(r) =vy+vir+uv,r? + ... (15)

In order to prove the conjecture (13), we start with the
conventional Schrodinger equation

I:I\IrD = ED\I,D’ (16)

and the general Hamiltonian

H= —%(V% +V3) + 2" V() + V()] + ri
12

A7)

where Z is the confinement strength and rj, = |r| — r,| is
the interelectronic distance. After the Jacobian-weighted
transformation

b, = TV, (18)

J = rP 1P 1sinP 29, (19)

where 6 is the interelectronic angle, the Schrodinger equa-
tion (16) becomes

(T + AU+ 272V + W), = E,dp,  (20)

in which, for states with zero total angular momentum, the
kinetic, centrifugal, external, and Coulomb operators are,
respectively

- 0r 9% I 1\/d 1
(B D) @
ary  ar3 o rr)\ae* 4 2D

. 1 /1 1
U= e (r_% " ﬁ)’ 2)
V = V() + V(ry), (23)
W= ! , (24)
\/r% + r3 — 2r r, cosd
and
A=L=20-4 2)4(1) ki) (25)

We now need to recast the Schrodinger equation so that
perturbation theory can be applied. To achieve this, we
successively introduce the scaled quantities

7% (26)
K

r— —r,
KZ

where k = A™1/m*2 and introduce the scaled energy
K272
A

The Schrodinger equation then takes the simple form

Ep = Ep. (27)

and it is clear that perturbation theory can now be used to
expand the energy both in terms of Z and A.

In the D = oo limit, the kinetic term vanishes and clas-
sical electrostatics cause the electrons to settle into a fixed
(“Lewis”) structure [19] that minimizes the effective po-
tential

A A A 1 A
X=U+V+zw. (29)
The minimization conditions are

aX(ry, r, 0) _ dX(ry, 1, 0) —0 (30)
arl 8}’2
8.5((1‘1, r2,9) =0, 31)
a0
and the stability condition implies m > —2. Assuming that

the two electrons are equivalent [39], the resulting exact
density and energy are
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|Deol? = 8(r) = reo)8(ry = 1)8(60 — 0), (32)

E 0 = X(Fo Too» Ocs), (33)

where 6 is the Dirac delta function. Substituting Taylor
expansions of r,, and 6, into (30) and (31) yields

=+...,
Z

a? ( 1 m+1v1)1

m+2 2\/5 m v
0 a 1, (35)
cosbp, = ——=—=+...,
W2z

where a~ "2 = sgn(m)mv,. The m = 0 case requires
special attention, and is found by taking the m — 0 limit.

For the HF energy, things are simpler. The HF wave
function is independent of 6, so the only angular depen-
dence comes from the Jacobian (19). Moreover, because

(34)

Foo = &

sin?~20 T
lim ——————=6(0 — =, 36
Pk [T sinP~20d6 ( 2) (36)

it follows [20] that 0%F = 77/2. Solving (30), one finds that

rHF and r,, are equal to second order in 1/Z. Thus, in the

large -D limit, the HF density and energy are
|12 = 8(ry — riF)8(r, — 7l )5(

T

2), (37)

T
et = X(rtr, %) (38)
and correlation effects originate entirely from the fact that

0o, is slightly greater than 7r/2 for finite Z.
Expanding (33) and (38) in terms of Z and D yields

| 1
(2,0) - _ _ _
BV = =8~ sm ¥y (39)
20 1
Egr (V) = 2(m m+2) (40)

thus showing that both E?% and EZ” depend on the
leading power m of the external potential but not on v(r).
Subtracting these energies yields
1

EXOWV) = - o (41)

and completes the proof that, in the high-density limit, the
leading coefficient EZY of the large-D expansion of the
correlation energy is universal; i.e., it does not depend on
the external potential V(r).

What is the origin of the constant in Eq. (41)? It comes
directly from the leading coefficient (1/4+/2) in the 1/Z
expansion of 6, [Eq. (35)] and, because that is determined
via Eq. (31), it is independent of the external potential
V(r). This reveals that Eq. (41) applies to a pair of electrons
in any radial external potential, but not to anisotropic
external potentials.

Detailed analysis of E?? shows that it results from
contributions of +1/8 and —1/4 from the centrifugal

potential U and the Coulomb operator W respectively.

The external potential V which contributes identically in
the exact and HF treatments, does not contribute to the
correlation energy. Kato has made a similar argument [15]
to explain the behavior of the wave function as rj, — 0. In
a D-dimensional space, the Kato cusp condition is [16]

0w, |
— Wp(r, = 0), 4
s |y D=1 p(riz =0) 42)

and arises from the cancellation of the singularities in the
Coulomb operator and the D-dependent angular part of the
kinetic operator [6]. These observations suggest a connec-
tion between the result (41) and the Kato cusp (42). For
large but finite D, the discovery that the Kato cusp plays a
key role in the large-Z limit would not be surprising for, in
this limit, the only relevant information is the behavior (42)
of the wave function near rj, = 0.

The E@" and Egi;l) coefficients can be found by con-
sidering the Langmuir vibrations of the electrons around
their equilibrium positions [19,20]. The general expres-
sions depend on v, and v;, but are not reported here.
However, for v(r) = 1, which includes many of the most
common external potentials, we find

85 9/32 1/2

128 (m+ 27 (m+2)2
1/16

(m+2)12+2

ESD(V) =
(43)

showing that E(Cz’l) , unlike E(Cz,o), is potential dependent. It
is singular at m = —2, tends to —85/128 as m — oo, and
reaches a maximum of —0.388482 at m = —0.344223.
The latter value of m corresponds to the minimum of the
correlation energy in the large-D limit. Numerical values

of E>V are reported in Table I for various systems, and the

TABLE . E20, E(}%‘FO), E?? and E*V coefficients for various systems and v(r) = 1.
System m —E20 —E20 o —EZY
Helium -1 5/8 1/2 1/8 0.424 479
Aiium 1 7/24 1/6 1/8 0412767
Hookium 2 1/4 1/8 1/8 0.433 594
Quartium 4 5/24 1/12 1/8 0.465028
Sextium 6 3/16 1/16 1/8 0486771
Ballium 00 1/8 0 1/8 0.664 063
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Coefficients

FIG. 1 (color online). Coefficients of the exact (dashed), HF
(dotted), and correlation (solid) energies with respect to m, for
v(r) = 1 [Egs. (1)-9)].

components of the correlation energy are shown graphi-
cally in Fig. 1.

In conclusion, we have proved that the leading term
E.~ —1/(8D?) in the large-D expansion of the high-
density correlation energy of an electron pair is invariant
to the nature of the radial confining potential. Although
formally divergent [40], truncated 1/D expansions have
been found to be a powerful tool for the exploration of
correlation effects and, in the present study, they help to
explain the observation that, in finite-dimensional spaces
such as D = 3, the correlation energy depends only weakly
on the confining potential.
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