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We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time.

We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for

cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under

which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of

state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observa-

tionally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
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The problem of dark energy being responsible for cos-
mic acceleration today has motivated the idea that the
gravitational law may be modified from general relativity
(GR) on large scales (see Ref. [1] for reviews). On the other
hand, one needs to recover Newton gravity at short dis-
tances for compatibility with solar-system experiments.
Besides the chameleon mechanism [2] based on the
density-dependent matter coupling with a scalar field
[used also in fðRÞ theories [3]], there is another way to
recover GR at short distances: the Vainshtein mechanism
[4] based on nonlinear field self-interactions such as
h�ðr�Þ2, where ðr�Þ2 � @��@��. This nonlinear ef-

fect has been employed for the brane-bending mode of the
self-accelerating branch in the Dvali-Gabadadze-Porrati
braneworld [5], but the Dvali-Gabadadze-Porrati model is
unfortunately plagued by a ghost problem [6].

In order to avoid the appearance of ghosts, it is important
to keep the field equations up to second order in time
derivatives. A scalar field � called ‘‘Galileon’’ [7], whose
action is invariant under the Galilean symmetry @�� !
@��þ b� in flat space-time, allows five field Lagrangians

that give rise to derivatives up to second order (see
Refs. [8–10] for related works). If the analysis in [7] is
extended to the curved space-time, one needs to introduce
couplings between the field� and the curvature tensors for
constructing the Lagrangians free from higher-order
derivatives in the equations of motion [8].

The five covariant Lagrangians that respect the Galilean
symmetry in flat space-time are given by

L1 ¼ M3�; L2 ¼ ðr�Þ2; L3 ¼ ðh�Þðr�Þ2=M3;

L4 ¼ ðr�Þ2½2ðh�Þ2 � 2�;���
;�� � Rðr�Þ2=2�=M6;

L5 ¼ ðr�Þ2½ðh�Þ3 � 3ðh�Þ�;���
;��

þ 2��
;��

�
;��

�
;� � 6�;��

;���;�G���=M9; (1)

where a semicolon represents a covariant derivative,M is a
constant having a dimension of mass, and G�� is the

Einstein tensor. In this Letter we study the cosmology
based on the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �M2
pl

2
Rþ 1

2

X5
i¼1

ciLi

�
þ

Z
d4xLM; (2)

whereMpl is the reduced Planck mass and ci are constants.

For the matter LagrangianLM we take into account perfect
fluids of radiation (density �r) and nonrelativistic matter
(density �m). Although the cosmological dynamics up to
L4 were discussed in Ref. [10], we will show that inclusion
of L5 is crucially important to determine the full Galileon
dynamics. Moreover the viable parameter space will be
clarified for such a full theory.
In the flat Friedmann-Lemaı̂tre-Robertson-Walker uni-

verse with a scale factor aðtÞ, the variation of the action (2)
leads to

3M2
plH

2 ¼ �DE þ �m þ �r; (3)

3M2
plH

2 þ 2M2
pl

_H ¼ �PDE � �r=3; (4)

whereH ¼ _a=a is the Hubble parameter (a dot represents a
derivative with respect to cosmic time t), and

�DE � �c1M
3�=2� c2 _�2=2þ 3c3H _�3=M3

� 45c4H
2 _�4=ð2M6Þ þ 21c5H

3 _�5=M9; (5)

PDE � c1M
3�=2� c2 _�2=2� c3 _�2 €�=M3

þ 3c4 _�3½8H €�þ ð3H2 þ 2 _HÞ _��=ð2M6Þ
� 3c5H _�4½5H €�þ 2ðH2 þ _HÞ _��=M9: (6)

The matter fluids obey the continuity equations _�m þ
3H�m ¼ 0 and _�r þ 4H�r ¼ 0. From Eqs. (3) and (4)
the dark component also satisfies _�DE þ 3Hð�DE þ
PDEÞ ¼ 0. We define the dark energy equation of state
wDE and the effective equation of state weff , as wDE �
PDE=�DE andweff � �1� 2 _H=ð3H2Þ. The latter is known
by the background expansion history of the Universe.
Since we are interested in the case where the late-time

cosmic acceleration is driven by field kinetic terms without
a potential, we set c1 ¼ 0 in the following discussion.
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We introduce the following quantities useful to describe
the cosmological dynamics:

r1 � _�dSHdS=ð _�HÞ; r2 � ð _�= _�dSÞ4=r1; (7)

where _�dS and HdS � 10�60Mpl are the field velocity and

the Hubble parameter at the de Sitter (dS) solution, respec-
tively. The mass M is related to HdS via M3 ¼ MplH

2
dS.

At the dS point one has r1 ¼ 1 and r2 ¼ 1. Equation (3)
can be written as �m þ�r þ�DE ¼ 1, where �m ¼
�m=ð3M2

plH
2Þ, �r ¼ �r=ð3M2

plH
2Þ, and

�DE ¼ � 1

6
c2x

2
dSr

3
1r2 þ c3x

3
dSr

2
1r2

� 15

2
c4x

4
dSr1r2 þ 7c5x

5
dSr2; (8)

where xdS � _�dS=ðHdSMplÞ. Since �DE ¼ 1 at the dS

point, Eq. (8) gives a relation between the terms c2x
2
dS,

c3x
3
dS, � � c4x

4
dS, � � c5x

5
dS. Combining this with another

relation coming from Eq. (4), we obtain

c2x
2
dS ¼ 6þ 9�� 12�; c3x

3
dS ¼ 2þ 9�� 9�: (9)

It is useful to use � and � because the coefficients of
physical quantities (such as �DE) can be expressed in
terms of those quantities thanks to Eq. (9). The relations
(9) are not subject to change under a rescaling ci ! ci=�

i

and xdS ! �xdS, where � is a real number. Therefore
rescaled choices of ci will lead to the same dynamics (as
they have the same � and �) for both the background and
the linear perturbation, which implies that redefining the
coefficients ci in terms of � and � is convenient.

The autonomous equations for the variables r1, r2, �r

follow from Eqs. (3) and (4), and fluid equations. One can
show that there is an equilibrium point characterized by

r1 ¼ 1; i:e: _�H ¼ const; (10)

at which the variables r2 and �r satisfy

r02¼
2r2ð3�3r2þ�rÞ

1þr2
; �0

r¼�rð�r�1�7r2Þ
1þr2

; (11)

where a prime represents a derivative with respect to N ¼
lna. This result is interesting because it shows the univer-
sality of the equations of motion without any dependence
on � and �. Along the solution (10), the field velocity

evolves as _� / t during radiation and matter eras (H /
1=t). There is also a simple relation �DE ¼ r2 along the
solution r1 ¼ 1.

We have three fixed points: (a) ðr1; r2;�rÞ ¼ ð1; 0; 1Þ
(radiation), (b) ðr1; r2;�rÞ ¼ ð1; 0; 0Þ (matter),
(c) ðr1; r2;�rÞ ¼ ð1; 1; 0Þ (dS). The stability of these points
can be analyzed by considering linear perturbations �r1,
�r2, ��r about them. The perturbation �r1 satisfies

�r01 ¼ � 9þ�r þ 3r2
2ð1þ r2Þ �r1; (12)

which shows that, in the regime 0 � r2 � 1 and �r � 0,
the solution is stable in the direction of r1. Since the dS

point is stable in the other two directions, the solutions
finally approach it. The points (a) and (b) are saddle
because they are unstable in the direction of r2.
Along the solution (10) we have �DE ¼ 3M6=H2,

PDE ¼ �3M6ð2þ weffÞ=H2, and

wDE¼�2�weff ¼� �rþ6

3ðr2þ1Þ ; weff ¼�r�6r2
3ðr2þ1Þ : (13)

From the radiation era to the dS epoch the effective equa-
tion of state evolves as weff ¼ 1=3 ! 0 ! �1, whereas
the dark energy equation of state exhibits a peculiar
evolution: wDE ¼ �7=3 ! �2 ! �1.
The evolution of dark energy is different depending on

the initial conditions of (r1, r2,�r). If they are chosen to be
close to the fixed point (a) at the onset of the radiation era,
then the solutions follow the sequence ðaÞ ! ðbÞ ! ðcÞ. If
r1 � 1 initially, the dominant contribution to �DE comes
from the term L5, i.e., �DE ’ 7�r2. In this case the
solutions approach r1 ¼ 1 at late times with the increase
of r1. For the initial conditions with r1 � 1 the term L2

gives the dominant contribution to�DE, but this case is not
viable because the field kinetic energy decreases rapidly as
in quintessence without a potential. Numerical simulations
show that if r1 & 2 initially the solutions approach r1 ¼ 1,
but in the opposite case the universe finally reaches the
matter-dominated epoch.
Let us find the allowed parameter space in terms of

(�, �) by deriving the conditions for the avoidance of
ghosts and instabilities of scalar and tensor perturbations.
Using the Faddeev-Jackiw method [11], the action (2) can
be expanded at second order in perturbations. Following
the similar procedure as in Ref. [12], the no-ghost condi-
tion for the scalar sector of the action (2) is given by

QS � �s=ð1þ�3Þ2 > 0; (14)

where s� 6ð1þ�1Þð�1 þ�2 þ�1�2 � 2�3 ��2
3Þ, and

�1 � 3�r1r2=2� 3�r2; (15)

�2 � ð3�� 4�þ 2Þr31r2=2� 2ð9�� 9�þ 2Þr21r2
þ 45�r1r2=2� 28�r2; (16)

�3 � �ð9�� 9�þ 2Þr21r2=2þ 15�r1r2=2� 21�r2=2:

(17)
The condition for the avoidance of Laplacian instabilities
associated with the scalar field propagation speed is

c2S¼fð1þ�1Þ2½2�0
3�ð1þ�3Þð5þ3weffÞþ3�mþ4�r�

�4�0
1ð1þ�1Þð1þ�2Þþ2ð1þ�3Þ2ð1þ�4Þg=s>0;

(18)

where

�4 � ��r1r2=2þ 3�r2ð3þ 3weff � 3r01=r1 � r02=r2Þ=2:
(19)

Similar calculations for the tensor perturbation lead to

QT � 3�r1r2=4� 3�r2=2þ 1=2> 0; (20)
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c2T ¼ 2r1ð2� �r1r2Þ � 3�ðr2r01 þ r1r
0
2Þ

2r1ð2þ 3�r1r2 � 6�r2Þ > 0: (21)

We consider the following three different regimes.
(i) r1 � 1, r2 � 1—This characterizes the early cos-

mological epoch in which the term L5 dominates the
dynamics of the field. For the scalar modes we have QS ’
60�r2 and c2S ’ ð1þ�rÞ=40. The sign change of r2 im-

plies the appearance of ghosts. For the initial conditions
with r2 > 0, it is required that �> 0. The Laplacian in-
stabilities of the scalar modes can be avoided because c2S ’
1=20 and c2S ’ 1=40 during radiation and matter eras, res-

pectively. Since QT ’ 1=2 and c2T ’ 1þ 3�r2ð5� 3�rÞ=
8 ’ 1, the tensor modes do not provide additional con-
straints. We also have

wDE ’ �ð1þ�rÞ=8; weff ’ �r=3; (22)

which is valid for �r � fr1; r2g.
(ii) r1 ¼ 1, r2 � 1—This corresponds to the equili-

brium point (10) during radiation or matter domination.
The conditions (14) and (18) reduce to

QS ’ 3ð2� 3�þ 6�Þr2 > 0; (23)

c2S ’
8þ 10�� 9�þ�rð2þ 3�� 3�Þ

3ð2� 3�þ 6�Þ > 0: (24)

For the branch r2 > 0 the first condition reduces to
2� 3�þ 6�> 0. For the tensor modes, we have c2T ’
1� r2ð4�þ 3�þ 3��rÞ=2 ’ 1 and QT > 0.

(iii) r1 ¼ 1, r2 ¼ 1—This corresponds to the dS point, at
which the conditions (14), (20), (18), and (21) are given by

QS ¼ 4� 9ð�� 2�Þ2
3ð�� 2�Þ2 > 0; (25)

QT ¼ ð2þ 3�� 6�Þ=4> 0; (26)

c2S ¼
ð�� 2�Þð4þ 15�2 � 48��þ 36�2Þ

2½4� 9ð�� 2�Þ2� > 0; (27)

c2T ¼ 2� �

2þ 3�� 6�
> 0: (28)

If�> 0, c2T can have a minimum during the transition from
the regime r2 � 1 to r2 ’ 1. This value tends to decrease
as � approaches 1. Imposing that c2T > 0 at the minimum,
we obtain �< 12

ffiffiffiffi
�

p � 9�� 2. In Fig. 1 we illustrate the
region in which this condition as well as the conditions
(23)–(28) are satisfied for r2 > 0. Numerical simulations
confirm that for the parameters inside the shaded region in
Fig. 1 the no-ghost and stability conditions are not violated
even in the intermediate cosmological epoch.

In Fig. 2 we plot the variation of wDE and weff versus the
redshift z for several different model parameters and initial
conditions. In the case (A) the initial condition is chosen
to be r1 ¼ 1, so that wDE and weff evolve according to

Eq. (13) with the variation of r2 and �r. While the evolu-
tion of weff is similar to that in the �CDM model, the dark
energy equation of state evolves from the regime
wDE <�1 to the dS attractor with wDE ¼ �1. The cases
(B) and (B0) in Fig. 2 correspond to the initial conditions in
regime (i). As estimated by Eq. (22), wDE starts to evolve
from �1=4 and reaches the value �1=8 during the matter
era. The evolution of wDE is different depending on the
epoch at which r1 grows to the order of 1. In case (B) the
solutions reach the regime r1 	 1 only recently, whereas in
case (B0) the approach of this regime occurs much earlier.
The equilibrium point (10) can be regarded as a tracker that
attracts solutions with different initial conditions to a com-
mon trajectory. Before approaching the tracker, the solu-
tions cross the boundary wDE ¼ �1 without any unstable
behavior of perturbations. Note that there are no significant
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FIG. 1 (color online). The viable parameter space in the (�, �)
plane for the branch r2 > 0. We also show several conditions that
determine the border between the allowed and excluded regions.
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FIG. 2. Evolution of weff and wDE for cases: (A) � ¼ �1:4,
� ¼ �0:8, xdS ¼ 1 with initial conditions r1 ¼ 1, r2 ¼ 10�60,
�r ¼ 0:999 99 at the redshift z ¼ 3:11
 108; (B) � ¼ 0:1, � ¼
0:049, xdS ¼ 1 with initial conditions r1 ¼ 5
 10�11, r2 ¼ 8

10�12, �r ¼ 0:999 995 at z ¼ 6:44
 108; and (B0) the same �,
�, xdS as in case (B) but with different initial conditions r1 ¼
5
 10�7, r2 ¼ 8
 10�16, �r ¼ 0:9995 at z ¼ 6:72
 106.
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differences for the variation of weff between cases (A) and
(B) [also (B0)].

In Fig. 3 we show the evolution of c2S and c
2
T for the same

model parameters and initial conditions as in Fig. 2. In
case (A) the scalar propagation speed remains subluminal,
as estimated by Eqs. (24) and (27). For � ¼ �1:4 and
� ¼ �0:8, Eq. (28) shows that at the dS point the tensor
mode becomes superluminal. However, both the scalar and
tensor modes can be subluminal at the dS point, as in
case (B) of Fig. 3 (� ¼ 0:1, � ¼ 0:049).

For the initial conditions starting from regime (i) we
require �> 0 to avoid ghosts. Under the conditions (23),
(25), and (27) with �> 0, one can show that c2S in Eq. (24)
gets larger than 1. If the solutions approach the tracker in
regime (ii) long before the dS epoch, there is a period in
which c2S exceeds 1. This superluminal propagation can be

avoided if r1 grows to the order of unity only recently.
Case (B) in Fig. 3 corresponds to such an example for
which c2S has a peak smaller than 1 after the matter era. In

this case, the tensor mode is slightly superluminal in
regime (i). In general, there is a period in which the
propagation speed of either scalar or tensor modes exceeds
1. However, this does not necessarily imply the inconsis-
tency of theory because of the possibility for the absence of
closed causal curves [10].

In summary, we have studied the cosmology for the full
Galileon action (2) and derived all conditions for the con-
sistency of such theory. We have shown that, under the
conditions (9), there exist stable dS solutions responsible
for dark energy. In spite of the complexities of Galileon
Lagrangians, the conditions for the avoidance of ghosts
and Laplacian instabilities constrain the allowed parameter
space in terms of the variables � and � in a simple way.
While the evolution of wDE, c

2
S, and c

2
T is different depend-

ing on the model parameters and the initial conditions of

r1, we have derived convenient analytic formulas to evalu-
ate those quantities in three distinct regimes.
There are several interesting applications of Galileon

gravity. First, the study of cosmological perturbations
may provide some signatures for the modification of gra-
vity from GR. The last term of L4 in Eq. (1), for example,
gives rise to a correction of the order �r1r2 to the bare
gravitational constant. This affects the effective gravita-
tional coupling Geff that appears in the equation of matter
perturbations. Also it will be possible to constrain the
Galileon models from the time variation of Geff . Second,
the study of spherically symmetric solutions in both weak
and strong gravitational backgrounds can allow us to
understand how the Vainshtein mechanism works in gen-
eral. We expect that such analyses will provide us deep
insight on the possible modification of gravity and that it
will shed new light on the nature of dark energy.
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