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It is shown that the symmetry algebra of asymptotically flat spacetimes at null infinity in 4 dimensions

should be taken as the semidirect sum of supertranslations with infinitesimal local conformal trans-

formations and not, as usually done, with the Lorentz algebra. As a consequence, two-dimensional

conformal field theory techniques will play as fundamental a role in this context of direct physical interest

as they do in three-dimensional anti–de Sitter gravity.
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In the study of gravitational waves in the early 1960s
[1,2], a lot of effort was devoted to specifying both local
coordinate and global boundary conditions at null infinity
that characterize asymptotically flat four-dimensional
spacetimes. The group of nonsingular transformations
leaving these conditions invariant is the well-known
Bondi-Metzner-Sachs (BMS) group. It consists of the
semidirect product of the group of globally defined con-
formal transformations of the unit 2-sphere, which is iso-
morphic to the orthochronous homogeneous Lorentz
group, times the Abelian normal subgroup of so-called
supertranslations.

What seems to have been largely overlooked so far is the
fact that, when one focuses on infinitesimal transforma-
tions and does not require the associated finite transforma-
tions to be globally well-defined, the symmetry algebra is
the semidirect sum of the infinitesimal local conformal
transformations of the 2-sphere with the Abelian ideal
of supertranslations, and now both factors are infinite-
dimensional. This is already obvious from the details of
the derivation of the asymptotic symmetry algebra by
Sachs in 1962 [3].

Let x0 ¼ u, x1 ¼ r, x2 ¼ �, x3 ¼ �, and A; B; . . . ¼
2; 3. Following Ref. [3] up to notation, the metric g�� of

an asymptotically flat spacetime can be written in the form

ds2 ¼ e2�
V

r
du2 � 2e2�dudrþ gABðdxA �UAduÞ

� ðdxB �UBduÞ; (1)

where�, V,UA, and gABðdetgABÞ�1=2 are 6 functions of the
coordinates, with detgAB ¼ r4b for a function bðu; �;�Þ.
Sachs fixes b ¼ sin2�, but the geometrical analysis by
Penrose [4] suggests to keep it arbitrary throughout the
analysis. In order to streamline the derivation below, it
turns out to be convenient to use the parametrization jbj ¼
1
4 e

4 ~’, which implies, in particular, that gAB@�gAB ¼
@� lnðr44 e4 ~’Þ.

The falloff conditions for gAB are

gABdx
AdxB ¼ r2 ��ABdx

AdxB þOðrÞ; (2)

where the two-dimensional metric ��AB is conformal to the
metric of the unit 2-sphere, ��AB ¼ e2’0�AB and

0�ABdx
AdxB ¼ d�2 þ sin2�d�2. In terms of the standard

complex coordinates � ¼ ei� cot�2 , the metric on the

sphere is conformally flat: d�2 þ sin2�d�2 ¼ P�2d�d �� ,
Pð�; ��Þ ¼ 1

2 ð1þ � ��Þ. We thus have ��ABdx
AdxB ¼

e2 ~’d�d �� , with ~’ ¼ ’� lnP. In the following, we denote
by �DA the covariant derivative with respect to ��AB and by
�� the associated Laplacian.
In the general case, the remaining falloff conditions are

� ¼ Oðr�2Þ; UA ¼ Oðr�2Þ;
V=r ¼ �2rdu ~’þ �� ~’þOðr�1Þ:

(3)

The transformations that leave the form of the metric (1)
invariant up to a conformal rescaling of gAB, i.e., up to a
shift of ~’ by ~!ðu; xAÞ, are generated by spacetime vectors
satisfying

L	grr ¼ 0; L	grA ¼ 0; gABL	gAB ¼ 4 ~!;

L	gur ¼ Oðr�2Þ; L	guA ¼ Oð1Þ;
L	gAB ¼ OðrÞ;
L	guu ¼ �2r@u ~!� 2 ~! �� ~’þ �� ~!þOðr�1Þ:

(4)

The general solution to these equations is

	u ¼ f; 	A ¼ YA þ IA;

IA ¼ �f;B
Z 1

r
dr0ðe2�gABÞ;

	r ¼ �1
2rð �DA	

A � f;BU
B þ 2f@u ~’� 2 ~!Þ;

(5)

with @rf ¼ 0 ¼ @rY. In addition,

@uf ¼ f@u ~’þ 1

2
c � ~!

, f ¼ e ~’

�
T þ 1

2

Z u

0
du0e� ~’ðc � 2 ~!Þ

�
; (6)
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where we use the notation c ¼ �DAY
A and where @uT ¼

0 ¼ @uY
A. Finally, YA is required to be a conformal Killing

vector of ��AB.
The Lie algebra bms4 can be defined as the semidirect

sum of the Lie algebra of conformal Killing vectors YA @
@xA

of the Riemann sphere with the Abelian ideal consisting of
functions TðxAÞ on the Riemann sphere. The bracket is

defined through ðŶ; T̂Þ ¼ ½ðY1; T1Þ; ðY2; T2Þ�:
ŶA ¼ YB

1 @BY
A
2 � YB

1 @BY
A
2 ;

T̂ ¼ YA
1 @AT2 � YA

2 @AT1 þ 1
2ðT1@AY

A
2 � T2@AY

A
1 Þ:

(7)

Consider then the modified Lie bracket

½	1; 	2�M ¼ ½	1; 	2� � 
g
	1
	2 þ 
g

	2
	1; (8)

where 
g
	1
	2 denotes the variation in 	2 under the variation

of the metric induced by 	1, 

g
	1
g�� ¼ L	1

g��.

Let I be the real line times the Riemann sphere with
coordinates u; xA ¼ ð�; ��Þ. On I , consider the scalar field
~’; ~! and the vectors fields �	ð~’; ~!; T; YÞ ¼ f @

@u þ YA @
@xA

,

with f given in (6) and YA an u-independent conformal
Killing vector of the Riemann sphere.

When equipped with the modified bracket, both
the vector fields �	 and the spacetime vectors (5) provide
a linear representation of the direct sum of bms4
with the Abelian algebra of conformal rescalings, i.e.,
the space of elements of the form ðY; T;!Þ, where

½ðY1; T1; ~!1Þ; ðY2; T2; ~!2Þ� ¼ ðŶ; T̂; ~̂!Þ, with Ŷ and T̂ as

before and ~̂! ¼ 0.
Depending on the space of functions under considera-

tion, there are then basically two options which definewhat
is actually meant by bms4.

The first choice consists in restricting oneself to globally
well-defined transformations on the unit or, equivalently,
the Riemann sphere. This singles out the global conformal
transformations, also called projective transformations,
and the associated group is isomorphic to SLð2;CÞ=Z2,
which is itself isomorphic to the proper, orthochronous
Lorentz group. Associated with this choice, the functions
Tð�;�Þ, which are the generators of the so-called super-
translations, have been expanded into spherical harmonics.
This choice has been adopted in the original work by
Bondi, van der Burg, Metzner, and Sachs and followed
ever since, most notably in the work of Penrose and
Newman-Penrose [4,5]. A lot of attention has been devoted
to the conformal rescalings and the ‘‘edth’’ operator to-
gether with spin-weighted spherical harmonics have been
introduced. After attempts to cut this version of the BMS
group down to the standard Poincaré group, it has been
taken seriously as an invariance group of asymptotically
flat spacetimes. Its consequences have been investigated,
but we believe that it is fair to say that this version of the
BMS group has had only a limited amount of success.

The second choice that we would like to advocate here is
motivated by exactly the same considerations that are at the

origin of the breakthrough in two-dimensional conformal
quantum field theories [6]. It consists in focusing on local
properties and allowing the set of all, not necessarily in-
vertible, holomorphic mappings. In this case, Laurent series
on the Riemann sphere are allowed. The general solution

to the conformal Killing equations is Y� ¼ Y� ð�Þ, Y �� ¼
Y

�� ð ��Þ, and the standard basis vectors are chosen as

ln ¼ ��nþ1 @

@�
; �ln ¼ � ��nþ1 @

@ ��
; n 2 Z: (9)

At the same time, let us choose to expand the generators of
the supertranslations with respect to

Tm;n ¼ �m ��n; m; n 2 Z: (10)

In terms of the basis vectors ll � ðll; 0Þ and Tmn � ð0; TmnÞ,
the commutation relations for the complexified bms4
algebra read

½lm; ln� ¼ ðm� nÞlmþn; ½�lm; �ln� ¼ ðm� nÞ�lmþn;

½lm; �ln� ¼ 0; ½ll; Tm;n� ¼
�
lþ 1

2
�m

�
Tmþl;n;

½�ll; Tm;n� ¼
�
lþ 1

2
� n

�
Tm;nþl; ½Tl:m; Tn;o� ¼ 0:

(11)

The complexified Poincaré algebra is the subalgebra
spanned by the generators

l�1; l0; l1; �l�1; �l0; �l1; T0;0; T1;0; T0;1; T1;1: (12)

The considerations above apply for all choices of ~’,
which is freely at our disposal. In the original work of
Bondi, van der Burg, Metzner, and Sachs, and in much of
the subsequent work, the choice ~’ ¼ � lnPwas preferred.
From the conformal point of view, the choice ~’ ¼ 0 is
interesting as it turns ��AB into the standard flat metric on
the Riemann sphere.
The consequences of local conformal invariance need to

be taken into account when studying representations, and
our result means that two-dimensional conformal field
theory techniques should play a major role in both the
classical and quantum theory of gravitational radiation.
For instance, the representation theory based on the stan-
dard BMS group has been discussed in Ref. [7] and refer-
ences therein, while related holographic considerations
have appeared in Refs. [8,9]. Furthermore, implications
of the supertranslations in the context of asymptotic quan-
tization [10,11] have already been investigated. It should
prove most interesting to extend these considerations to
include the local conformal transformations.
A new perspective also arises for the problem of angular

momentum in general relativity [12] since the factor alge-
bra of bms4 modulo the Abelian ideal of infinitesimal
supertranslations is now the infinite-dimensional Virasoro
algebra rather than the Lorentz algebra.
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Earlier work where the relevance of conformal field
theories for asymptotically flat spacetimes at null infinity
has been discussed by starting out from the correspondence
in the (anti–)de Sitter case includes Refs. [13–18]. In
particular, a symmetry algebra of the kind that we have
derived has been conjectured in Ref. [19].

A motivation for our investigation comes from
Strominger’s derivation [20] of the Bekenstein-Hawking
entropy for black holes that have a near horizon geometry
that is locally AdS3. More recently, a similar analysis has
been applied in the case of an extreme four-dimensional
Kerr black hole [21]. Our hope is to make progress along
these lines in the nonextreme case. As a first step, we have
computed the behavior of Bondi’s news tensor as well as
the mass and angular momentum aspects under local con-
formal transformations in Ref. [22], where detailed proofs
of all statements of this Letter can also be found. The next
step consists in the construction of the surface charges,
generators, and central extensions associated to bms4.
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