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We consider the security of continuous-variable quantum cryptography as we approach the

classical limit, i.e., when the unknown preparation noise at the sender’s station becomes significantly

noisy or thermal (even by as much as 104 times greater than the variance of the vacuum mode). We show

that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is

not dependent on the channel transmission, and is therefore incredibly robust against significant amounts

of excess preparation noise. We extend these results to consider for the first time quantum cryptography at

wavelengths considerably longer than optical and find that regions of security still exist all the way down

to the microwave.
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Introduction.—Quantum key distribution (QKD) using
continuous variables (CV) [1,2] allows two people, Alice
and Bob, to generate a secure key which can be used to
encrypt messages. CV-QKD protocols using Gaussian
modulation [3–8], initially begin with Alice preparing a
number of randomly displaced pure coherent states and
sending them over an insecure quantum channel to Bob.
Generally, it is assumed that Alice’s states must be pure
quantum states to a good approximation otherwise her
ability to perform QKD will rapidly become compromised.
This seemed to be borne out by recent calculations [9] that
showed that the distance over which CV-QKD was secure,
when Alice used mixed coherent states in the protocol, fell
rapidly as the states became significantly impure.

In this Letter, we show that, provided the channel trans-
mission losses do not exceed 50%, the security of quantum
cryptography is not dependent on the channel transmission,
and is therefore incredibly robust against significant levels
of impurity of Alice’s states, without the additional pre-
vious requirement of purifiers [9]. This is a remarkable
result as we might naturally expect that as Alice’s states
become more and more thermalized secure transmission
over any finite distance would become impossible. This
further motivates an investigation of the security of CV-
QKD as we move from optical frequencies into the infrared
and down into the microwave region. As the wavelength
gets longer there is no direct way of detecting single
photons [10], thus ruling out discrete variable approaches.
While CV measurements still apply, state preparation and
the quantum channel become thermalized by the signifi-
cant levels of background radiation that exist for longer
wavelengths at room temperature. Here we show that
CV-QKD remains, in principle, possible over short dis-
tances, well into the infrared and into the microwave
regime. This surprising result highlights the possibility of

short-range quantum cryptography applications at subop-
tical frequencies.
Quantum cryptography using Gaussian states.—Typical

Gaussian modulated CV-QKD protocols begin with Alice
randomly modulating a vacuum state to create a coherent
state j�i [11]. This random modulation or displacement
� ¼ QA þ iPA contains two independent variables XS 2
fQA; PAg chosen from a two-dimensional Gaussian distri-
bution with variance VS and zero mean. It is these continu-
ous variables that will ultimately be used to construct a
secret key between Alice and Bob. Alice then sends a
whole ensemble of these randomly displaced pure coherent
states to Bob over a quantum channel which is monitored
by the eavesdropper, Eve. At the output of the channel, Bob
measures the incoming states using either homodyne [4] or
heterodyne detection [5].
The initial modes prepared by Alice can be described in

the Heisenberg picture as X̂A ¼ XS þ X̂0 where XS de-

scribes the classical signal and X̂0 the thermal mode.

Here the quadratures Q̂ and P̂ are defined as X̂A 2
fQ̂A; P̂Ag and X̂0 2 fQ̂0; P̂0g. The overall variance V :¼
VðX̂AÞ of Alice’s initially prepared mode is given by V ¼
VS þ V0. We can further decompose the variance of the

thermal mode V0 :¼ VðX̂0Þ into the variance of the pure
vacuum mode (which is normalized to 1) and the variance
of the unknown preparation noise at Alice’s station � to
give V0 ¼ 1þ �. Typically, in CV-QKD protocols,
we simply have V ¼ VS þ 1, i.e., zero preparation noise
(� ¼ 0). In this Letter, we consider the effect of having
nonzero preparation noise on Alice’s mode preparation,
i.e., �> 0. We assume that this preparation noise cannot
be controlled or manipulated by Eve.
In the analysis of CV-QKD protocols, the collective

Gaussian attacks [12–14] are the most important. In fact,
up to a suitable symmetrization of the protocols [15], these
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attacks bound the most powerful eavesdropping strategy
allowed by quantum mechanics [15]. The most general
form of a collective Gaussian attack is explicitly described
in Ref. [14]. This consists in Eve interacting her (indepen-
dent) ancilla modes with Alice and Bob’s mode for each
run of the protocol in such a way to generate a memoryless
(one-mode) Gaussian channel. Eve’s ancillae are then col-
lected in a quantum memory whose measurement is opti-
mized on Alice and Bob’s classical communications [14].
For a practical implementation of the protocols, the most
important collective Gaussian attack is the one based on
the entangling cloner [16] which is exactly the model
considered in our Letter. This consists in Eve perfectly
replacing the quantum channel between Alice and Bob
with her own quantum channel where the loss is simulated
by a beam splitter with transmission T (which ranges in
value from 0 to 1). She then creates her ancilla modes
which are two-mode squeezed states [11] [or commonly
known as, Einstein-Podolsky-Rosen (EPR) states], with
varianceW. The modes of the EPR beam can be described

by the operators Ê00 and Ê. She keeps one mode of the

beam Ê00 and injects the other mode Ê into the unused port

of the beam splitter, resulting in the output mode Ê0. Eve
then collectively detects all modes Ê0 and Ê00, gathered
from each of the runs of the protocol, in a final coherent
measurement. The final stages of the protocol consists in
Alice and Bob publicly revealing a subset of their data in
order to estimate the channel transmission T and excess
channel noise W [2]. We also assume that Alice and Bob
(and Eve) know the variance of the unknown preparation
noise � in order to properly estimate the channel noise as
opposed to the sum of the channel noise and the prepara-
tion noise. However, the shot to shot displacement due to
the excess preparation noise remains unknown to everyone.
In the final steps of the protocol, Alice and Bob perform a
reconciliation protocol (e.g., see [1]) to correct any errors
they might have between them and then finally privacy
amplification [2] to reduce Eve’s knowledge of the key to a
negligible, and safe amount.

Reverse reconciliation.—We begin our analysis by first
using the CV-QKD protocol known as reverse reconciliation
[4], which consists in Alice (and Eve) optimally estimating
Bob’s measurement outcomes. We note that the previous
analysis given in [9] also considered thermal state CV-QKD
using reverse reconciliation. However, for completeness, we
give the derivation for reverse reconciliation which will be
helpful in calculating the direct reconciliation case and for a
comparison between the two protocols. The secret key rate
Rb for reverse reconciliation where Bob uses homodyne
detection is given by Rb :¼ IðXA:XBÞ � IðXB:EÞ. Here
IðXA:XBÞ is called the mutual information between Alice
and Bob and defined in terms of the Shannon (or classical)
entropy [17]. The quantummutual information between Eve
and Bob IðXB:EÞ is given by the Holevo information [18]
and describes the greatest amount of information one can
extract from a quantum state [19].

The secret key rate Rb can be calculated (see supple-
mentary information [19] for complete derivation) for
various values of preparation noise, i.e., V0 ¼ 1, 10, 100,
1000. The results are plotted in Fig. 1 for a lossy channel
(i.e., W ¼ 1 which corresponds to Eve simply inserting a
vacuum state into the unused port of the beam splitter).
We see that, as expected, the security is dependent on the
channel transmission, and starts deteriorating rapidly as the
excess preparation noise is increased. In fact, after only a
modest increase in preparation noise (from V0 ¼ 1 to
V0 ¼ 10), the secure region has shrunk to T � >0:89.
Direct reconciliation.—We now turn our attention to

another CV-QKD scheme known as direct reconciliation
[3]. Direct reconciliation was the first protocol to show that
one could use Gaussian modulated coherent states to create
a secure key. Unlike reverse reconciliation, this protocol is
a forward-way scheme where Bob (and Eve) are trying to
optimally estimate the values of Alice’s initial displace-
ments, or encodings, QA and PA. However, direct recon-
ciliation has the drawback in its inability to create a secret
key when the loss is greater than 3 dB. This corresponds to
T < 0:5 and can be intuitively thought of as Eve sharing
more common information with Alice than Bob does.
Consequently, reverse reconciliation (or postselection
[7]) is usually considered the most practical CV-QKD
protocol [20]. However, as we will see, despite these
shortcomings, direct reconciliation offers a surprising
advantage as a potential platform for noise tolerant short-
range QKD.
The secret key rate Rc for direct reconciliation using

homodyne detection is defined as Rc :¼ IðXA:XBÞ
�IðXA:EÞ, where IðXA:EÞ is again the Holevo quantity
but now defined between Eve and Alice. We can now
calculate the subsequent key rates (see supplementary
material [19] for details). In Fig. 2 we have plotted the
resulting secret key rates for various values of V0 using
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FIG. 1 (color online). Secret key rate Rb versus channel trans-
mission T using reverse reconciliation. Increasing the amount
of unknown classical noise on Alice’s preparation modes in
CV-QKD. Here the thermal radiation is increased: V0 ¼ 1, 10,
102, 103 from left to right, where W ¼ 1 (lossy channel), VS ¼
105, and V0 ¼ 1 is a pure vacuum mode.
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W ¼ 1 and VS ¼ 105. We find that direct reconciliation
has the amazing feature that as the preparation noise
becomes more and more significant (even up to 104 times
that of the variance of the pure vacuum mode) only the
secret key rate decreases and not the channel transmission.
So for any value of preparation noise the initial starting
point is always T ¼ 0:5 (cf. reverse reconciliation where
modest increases in noise reduce the secure region close to
unity transmission, i.e., see Fig. 1). The basic physics is
that, for T > 0:5, the presence of quantum noise always
gives Alice and Bob a direct information advantage over
Eve. Increased preparation noise reduces this advantage,
but it always remains finite. In contrast, for reverse recon-
ciliation, Alice’s ability to estimate what Bob received is
rapidly compromised by the preparation noise. This re-
moves their information advantage over Eve.

In Fig. 3 we have a security threshold plot for direct and
reverse reconciliation for W ¼ 1. The solid (blue) curve is
the previous best bound derived using reverse reconcili-
ation and is given by [9]: �< ð1� TÞ�1. On the same plot
we have the new direct reconciliation bound which shows a
substantial improvement over the previous reverse recon-
ciliation bound. Remarkably, we can see how direct rec-
onciliation is unaffected by the channel transmission once
T > 0:5 and is secure for a minimum of 4 orders of
magnitude of preparation noise. Therefore, it is best to
use reverse reconciliation when T � 0:5 and direct recon-
ciliation when T > 0:5. Additionally, this result is robust to
the addition of small amounts of excess noise on the
quantum channel (i.e., W > 1) which moves the transmis-
sion limit slightly over 50% but retains qualitatively the
same behavior as the lossy case [21].

Infrared to microwave quantum cryptography.—It is
interesting to consider a possible application of our results:

wireless CV-QKD at infrared to microwave frequencies.
Today, a large number of popular wireless communication
technologies rely on such frequencies to distribute infor-
mation. Because of the ubiquitous nature of such devices,
their security is of fundamental importance. Moving to
frequencies lower than optical rules out discrete variable
QKD because of the lack of photon counting capabilities.
The problem for CV-QKD is that operating at lower
frequencies at room temperature inevitably introduces a
significant amount of thermal noise. In contrast to the
previous section, we now consider a simplified wireless
communication protocol where both Alice’s preparation
modes and the quantum channel (Eve) are affected by the
thermal background. When considering Eve we assume
that she prepares her attack within a cryostat which allows
her to essentially prepare pure modes away from the effect
of the background radiation. Then to cover her tracks she
adds known excess noise to her pure states to emulate the
thermal noise of the environment.
In the previous section we showed that direct reconcili-

ation is significantly more robust against preparation noise
than reverse reconciliation and is consequently better
suited to our current analysis. Given that, the next step is
to calculate how strong the thermal modes are at particular
frequencies from optical down to the microwave [1 GHz
(� ¼ 30 cm) to 300 GHz (� ¼ 1 mm)]. To do this we first
write the average photon number �n in terms of the quad-
rature variance V using �n ¼ hâyâi ¼ ðV � 1Þ=2 ) V ¼
2 �nþ 1 where we have symmetrized both quadratures,

i.e., V :¼ VðQ̂Þ ¼ VðP̂Þ and the annihilation operator â

is defined as â ¼ ðQ̂þ iP̂Þ=2. Second, the average photon
number is equal to �n ¼ ½expð@!=kBTÞ � 1��1 [11] and
represents the blackbody radiation spectrum. For example,
at room temperature T ¼ 300 K and using a microwave
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FIG. 3 (color online). Tolerable preparation (classical) excess
noise � ¼ V0 � 1 versus channel transmission T for direct and
reverse reconciliation over a lossy channel. The area under the
solid (blue) curve indicates the previous best secure region
threshold using reverse reconciliation [9]. However, for direct
reconciliation, after T ¼ 0:5, one can immediately obtain many
orders of magnitude improvement in the security threshold.
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FIG. 2 (color online). Secret key rate Rc versus channel trans-
mission T using direct reconciliation. Increasing the amount of
unknown classical noise on Alice’s preparation modes in
CV-QKD. Here the thermal radiation is increased: V0 ¼ 1, 10,
102, 103, 104 from top to bottom, where W ¼ 1, VS ¼ 105.
We find that direct reconciliation does not show any deteriora-
tion in channel loss when excessively large amounts of prepa-
ration noise is added.
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frequency of ! ¼ 1 GHz we find that the variance of the
thermal mode is V ¼ 7:85� 104; while at the other end of
the microwave spectrum (! ¼ 300 GHz) the variance is
V ¼ 2:63� 102.

Using the analysis from the previous section, we can
calculate the secret key rates using direct reconciliation. In
Fig. 4 we plot the security of CV-QKD from the optical
frequency (1500 nm) into the infrared region and down into
the microwave frequency as a function of channel line
transmission. We point out that the secure region corre-
sponds to R> 0. We find a window of security for CV-
QKD throughout all of the infrared region and into the
microwave frequency albeit with smaller allowed levels of
loss. In the midinfrared region transmission of T � 0:8 is
required while in the case of the microwave region we see
that a secure key can only be generated when the trans-
mission is higher than T � 0:9969. Nonetheless, it is
interesting that a small security window, in principle,
exists. Future analysis will look at improving the region
where infrared and microwave CV-QKD is secure. For
example, in [6] they showed that the security thresholds
for direct reconciliation could be improved (and in fact
beat the 3 dB loss limit) if two-way quantum communica-
tion was used. Furthermore, postselection [7] could also be
used to investigate a possible way to combat the high
preparation noise.

Conclusion.—In conclusion, we have shown that when
considering unknown preparation noise in continuous-
variable QKD, direct reconciliation is significantly more
robust than reverse reconciliation when the channel loss
does not exceed 50%. Incredibly, direct reconciliation
showed no deterioration in the loss threshold, only in secret

key rates, even when the variance of the thermal noise is as
much as 104 times greater than that of the pure vacuum
mode. Furthermore, we have shown that infrared to micro-
wave quantum cryptography is, in principle, possible over
short distances when using continuous variables and opens
up the possibility of further avenues of investigations.
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FIG. 4 (color online). Security of quantum cryptography over
various electromagnetic wave frequencies (at room temperature)
as a function of channel transmission. Moving our way from the
infrared spectrum (430 THz) and into the microwave spectrum
(300 GHz). Our results show that direct reconciliation should be
used when channel losses are less than 50% and reverse recon-
ciliation otherwise. We note that at each point the same impurity
applies to both Alice and Eve with VS ¼ 108.
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