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Ultracold atoms in optical lattices realize simple condensed matter models. We create an ensemble of

�60 harmonically trapped 2D Bose-Hubbard systems from a 87Rb Bose-Einstein condensate in an optical

lattice and use a magnetic resonance imaging approach to select a few 2D systems for study, thereby

eliminating ensemble averaging. Our identification of the transition from superfluid to Mott insulator, as a

function of both atom density and lattice depth, is in excellent agreement with a universal state diagram

[M. Rigol et al., Phys. Rev. A 79 053605 (2009)] suitable for our trapped system. In agreement with

theory, our data suggest a failure of the local density approximation in the transition region.
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Ultracold atoms in optical lattices constitute a highly
controllable system that allows the study of lattice models
relevant to condensed matter physics; e.g., the Bose-
Hubbard (BH) Hamiltonian [1–4]. By increasing the depth
of the lattice potential, one can drive an initially Bose-
condensed system through a transition from superfluid (SF)
to Mott insulator (MI); experiments have pinpointed the
lattice depth for this transition in 2D [5] and 3D [6]. The
BH model describes homogeneous systems, but trapped
ultracold gases are globally inhomogeneous, potentially
containing multiple, spatially separated phases. For suffi-
ciently large systems this inhomogeneity can be under-
stood using the local density approximation (LDA),
where each region of the system is treated as being locally
homogeneous. Rigol et al. [7] introduced a ‘‘universal state
diagram’’ for harmonically trapped systems describing the
configuration of spatially separated SF and MI phases,
coexisting under harmonic confinement. We present mea-
surements on 2D trapped systems and identify the transi-
tion from SF to MI as a function of lattice depth and atom
number; the resulting experimental state diagram, Fig. 1, is
in good agreement with the quantum Monte Carlo (QMC)
predictions going beyond LDA, [7].

The BH Hamiltonian models bosons in a lattice poten-
tial, here realized with ultracold 87Rb atoms in an optical
lattice. The BH model includes only pairwise on-site in-
teractions (interaction energy U) and nearest-neighbor
tunneling (tunneling matrix element t). At zero tempera-
ture this model predicts a SF phase and MI phases with
integer occupation n ¼ 1; 2; 3 . . . per lattice site, in terms
of the ratio U=t and the chemical potential �. The inter-
action strength is described by U=t while the density is
largely controlled by �=t. For weak interactions (small
U=t) the system is SF, while for U=t larger than a critical
value ðU=tÞc the system can enter a MI phase. For U=t �
ðU=tÞc, the phases alternate between SF and MI, increasing
in density as � increases [8].

The homogeneous BH model is not applicable to current
experiments on ultracold atoms, owing to their harmonic
trapping potential. The BH Hamiltonian for a lattice with
period d superimposed on a symmetric harmonic trap is [1]
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where b̂yi is the creation operator of a boson at site i and
hi; ji constrains the sum to nearest-neighbor tunneling. The

FIG. 1 (color). State diagram for a harmonically trapped 2D
Bose gas. The blue line shows the QMC predicted [7] first
appearance of MI. The transition was measured at various N2D

from fðU=tÞ data (e.g., of Fig. 4, whose data were taken along
the green dashed path). The ovals denote the measured transition
boundary; their sizes represent the uncertainties in ~� and ðU=tÞc.
The small circles indicate individual measurements and are
shaded according to the side of the transition on which they
are. The yellow dashed line is a fit to the measured boundary for
~� > 20; this nonvertical [�exp ¼ 85:5ð27Þ� from horizontal],

suggests a breakdown of the LDA.
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parameter � ¼ m!2d2=2 describes the harmonic potential
(m is the atomic mass and! ¼ 2�� is the trap frequency).

In the LDA, �� �i2 ¼ �i is assumed to be constant
over an extended region, producing a local chemical po-
tential �i; the system’s properties are then computed with
the homogeneous BH Hamiltonian. The LDA explains the
evolution of a SF system into a nested collection of alter-
nating SF and MI shells as U=t increases [9], observed
using a magnetic resonance imaging (MRI) approach on a
3D system [10], by measuring collisional shifts [11], and
more recently by direct imaging on a single 2D system
[12].

The inhomogeneity from the trap leads, for sufficiently
large �, to a breakdown of the LDA: the trap potential can
increase the critical value ðU=tÞc, where MI first appears
[7]. Using a site-decoupled mean field theory (MFT) cal-
culation for our trapped system [13], we found that a
proximity-like effect [14] stabilizes the SF in regions
where the LDA-MFT predicts MI.

For a T ¼ 0 2D trapped system, the three parameters
U=t, �, and atom number N2D, fully specify the quantum
state of the system, even with coexisting regions of SF and
MI. Somewhat surprisingly, only two independent varia-
bles are sufficient [7],U=t and a characteristic density ~� ¼
N2D�=t. By monitoring the dependence of condensate frac-
tion f on ~� and U=t [5], we measure the state diagram for
2D systems in an optical lattice (Fig. 1).

We partition a 3D Bose-Einstein condensate (BEC) into
� 60 nearly independent 2D systems using a 1D optical
lattice along ẑ (Fig. 2). Additional optical lattices along x̂
and ŷ produce a BH Hamiltonian for each 2D system. At
higher temperatures than those discussed here, the first
appearance of n ¼ 1 MI domains was reported in
Ref. [5]. That ensemble measurement could not distinguish
between 2D systems with different ~�. To overcome the
ensemble averaging, we developed aMRI approach to slice
out a small subset of nearly identical 2D systems and
measure their momentum distribution. We also use
matter-wave focusing [15] to more accurately identify
the condensate.

We prepare a 2� 105 atom 87Rb BEC [16] with no
discernible thermal component, in the jF ¼ 1; mF ¼ 1i
state in a harmonic trap with measured trap frequencies
f�x; �y; �zg ¼ f23:2ð5Þ; 27:4ð3Þ; 42:8ð9Þg Hz [17]. The

BEC is confined 620 �m above the zero of a quadrupole
magnetic field at the intersection of a pair of 1064 nm laser
beams, propagating along x̂ and ŷ, with waists (1=e2 radii)
of�55 �m. At the center of the BEC the magnetic field is
B0 ¼ 193 �T, with Zeeman shift g�BB0=h ¼ 1:35 MHz.
The magnetic potential, nearly linear along ẑ with a gra-
dient of 2:180ð4Þ kHz=�m, cancels gravity and adds a
harmonic antitrapping potential in the x̂� ŷ plane for our
mF ¼ 1 atoms.

We load the BEC into a 3D optical lattice at the inter-
section of three pairs of linearly polarized nearly counter
propagating laser beams from a � ¼ 810 nm Ti:sapphire
laser [18]. These beams form independent 1D optical

lattices along x̂, ŷ and ẑ. The ẑ lattice, set to a final depth
of 24 ER, partitions the 3D BEC into 2D systems; the depth
of the x̂� ŷ lattice ranges from 0 to 20 ER and determines
the parameter U=t. Together all confining potentials de-
termine �. The recoil energy is ER ¼ @

2k2R=2m ¼
h� 3:4 kHz, where kR ¼ 2�=�. The lattices are turned
on from zero intensity in 100 ms with a half-Gaussian
intensity ramp (rms width of 37 ms). This time scale was
chosen to be adiabatic with respect to interactions and all
relevant single particle energy scales [5,19]. We measure
lattice depth to within � 2% by pulsing on each lattice
separately for 4 to 6 �s and observing the resulting atom
diffraction [5,20].
We implemented a MRI approach to address a small

number of adjacent, nearly identical, 2D systems
[Fig. 2(a)]. A rf magnetic field Brf transfers atoms from
mF ¼ 1 tomF ¼ 0 and�1. We choose Brf to maximize the
transfer into mF ¼ 0 using a 400 �s Blackman pulse (per-
fect transfer to mF ¼ 0 is impossible for our 3 level sys-
tem). The 2 kHz rms spectral width of this pulse, combined
with the magnetic field gradient gives a 0:9 �m rms spatial
resolution (�2 sites).
Following the rf pulse, the lattices are ramped off with

exponentially decreasing ramps (400 �s time constant)—
nearly adiabatic with respect to single particle energy
scales in the optical lattice—approximately mapping the
occupied crystal momentum states to free momentum
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FIG. 2 (color). (a) Our 3D BEC is divided into 2D systems by
an optical lattice in the presence of a linear magnetic field
gradient, both aligned along the ẑ direction. We use a MRI tech-
nique to selectively address a small subset of 2D systems.
(b) Matter-wave focusing is used to better resolve the SF phase
of the 2D Bose gas; shown is a schematic of the focusing of a
single 2D system after free evolution during TOF. (c)–(d) We
compare the measured atom distribution (approximating the
momentum distribution) of the ensemble of �60 2D systems
without focusing (c) with that of the addressed 2D systems in
the mF ¼ 0 sublevel with focusing (d), both with an x̂� ŷ lattice
at 9:5ER.
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states [21,22]. We concurrently remove the optical dipole
trap in <1 �s and the atoms then expand for a 18.1 ms
time of flight (TOF). During part of TOF, a magnetic field
gradient separates the three mF components. We then
detect the final spatial distribution of all three components
using resonant absorption imaging, which gives the distri-
bution of each spin component separately. The mF ¼ 0
distribution directly measures the momentum composition
of the nearly identical 2D systems selected by the rf pulse,
virtually eliminating the inhomogeneous averaging that is
present in the mF ¼ 1 distribution [see Fig. 2(c)]. The fact
that mF ¼ 0 atoms are insensitive to gradients in magnetic
fields ensures no distortions to the momentum distribution
due to field gradients.

Absorption images after TOF can differ from the in situ
momentum distributions for two primary reasons: (i) inter-
actions during TOF and (ii) finite TOF, here 18.1 ms. We
mitigate each of these effects: (i) The already weak inter-
actions during TOF for the small number of atoms trans-
ferred into mF ¼ 0 are further reduced by the rapid
expansion along ẑ after release from the tightly confining
vertical lattice; (ii) we used a matter-wave focusing tech-
nique: a temporal atom lens that images the in situ mo-
mentum distribution at a finite TOF [15]. To focus the
atoms we increase the harmonic trapping frequency by a
factor of about 3, by linearly ramping the intensity of our
1064 nm dipole trap in 200 �s, and then holding for
400 �s (during the rf pulse) just before TOF.

After TOF, our 3D BEC has a 57 �m Thomas-Fermi
(T-F) radius. When partitioned into an ensemble of 2D sys-

tems the TOF radius decreases to 47 �m [Fig. 2(c)]. For
the extracted 2D systems that radius is 20 �m. Figure 2(d)
illustrates the final reduction to 11 �m with focusing.
We carefully the calibrated atom number by measuring

the in situ 1D density profile nðzÞ, of our 3D BEC using the
MRI technique [Fig. 3(a)]. The T-F radius Rz ¼ 8:2ð2Þ �m
gives atom numberNT-F ¼ 1:8ð4Þ � 105; direct integration
of nðzÞ gives Nint ¼ 1:89ð5Þ � 105; measurement of ab-
sorption by all atoms after TOF gives Nabs ¼ 1:90ð5Þ �
105. These measurements are consistent with a combina-
tion of shot-to-shot number fluctuations and number mea-
surement uncertainty of �3%. We confirm this by loading
the BEC into the 1D optical lattice along ẑ, and again
measuring nðzÞ. The density profile expands along ẑ
[Fig. 3(b), circles] but the integrated atom number Nint ¼
1:84ð5Þ � 105 remains constant. Figure 3(b) also shows the
measured temperature T in a 1D optical lattice as a func-
tion of z (squares). T ¼ 15ð3Þ nK is nearly uniform over all
significantly occupied lattice sites, indicating that the 2D
systems taken together are effectively in thermal
equilibrium.
We setU=t by tuning the x̂� ŷ lattice depth, and ~� by rf-

selecting 2D systems with the desired atom number from
among the �60 available systems. As a result, each mea-
sured momentum distribution corresponds to a single point
on the U=t� ~� plane; we use f to distinguish between the
SF and MI phases.
We define f as the fraction of atoms in the sharp, focused

feature in the momentum distribution. We fit the broad
background, present due to thermal effects and quantum
depletion, including atoms in the MI phase, to the thermal
distribution of noninteracting classical particles in a 2D
sinusoidal band; in the shallow lattice limit the width of
this distribution is interpreted as temperature: T ¼
0:9ð2Þt=kB [5]. We smoothed the fit function in a region

FIG. 3 (color). Density profile nðzÞ for: (a) a 3D BEC and
(b) an ensemble of 2D systems. The atom number calculated
from the in situ T-F radius Rz ¼ 8:2ð2Þ �m is NT-F ¼ 1:8ð4Þ �
105. The vertical dashed lines indicate the T-F radius from our fit.
Continuous lines show a fit to the in situ 1D density profile nðzÞ.
The temperature of the selected 2D systems [squares in (b)] is
displayed on the right axis, as a function of position along ẑ. On
average T ¼ 15ð3Þ nK.

FIG. 4 (color). 2D condensate fraction for N2D � 3500 mea-
sured through the SF to MI transition. The red dashed curves are
described in the text. The insets (a)–(c) display the average
momentum distribution nðkÞ ¼ ½nxðkÞ þ nyðkÞ�=2 at different
U=t, where nxðkÞ is the momentum distribution integrated over
y and likewise for nyðkÞ. We identify the formation of the first MI
region at U=t ¼ 21ð2Þ. f � 0.
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within 0:1kR of the edge of the Brillouin zone to account
for nonadiabaticities in the lattice turn off near the band
edge [21]. We exclude a disk with 0:16kR radius around the
condensate feature from the fit and identify the condensate
as the atoms that remain within the disk after subtracting
the background fit. (We associate f > 0 with existence of
SF regions as is conventional.)

Figure 4 shows f versusU=t for 2D systems withN2D �
3500 and an initial temperature T ¼ 0:9ð2Þt=kB (as inter-
actions become increasingly important, this temperature
increases in units of t), a factor of 2 lower than that in
Ref. [5] where f & 0:4 and T � 2t. We identify three
distinct regions. For small U=t, f rapidly decreases
(Fig. 4, fit to a line) until f � 0:12 and ðU=tÞc ¼ 21ð2Þ
where the slope changes markedly. We associate this fea-
ture with the first appearance of a MI and the subsequent
decay (Fig. 4, fit to a parabola) with the spatial growth of
the MI regions. This association is supported by our MFT
calculation. For U=t > 60, f is indistinguishable from
zero. The critical point for appearance of MI ðU=tÞc ¼
21ð2Þ is consistent with trapped system QMC calculations
(ðU=tÞc ¼ 20:5 at ~� ¼ 53) [7]. A similar analysis at ~� �
20 gives ðU=tÞc ¼ 19ð2Þ, consistent with the past measure-
ment (ðU=tÞc ¼ 15:8ð20Þ) [5] and trapped system QMC
(ðU=tÞc ¼ 20 at ~� ¼ 20) [7,23], whereas homogeneous
system QMC calculations [24–26] gives ðU=tÞc ¼ 16:5.

Our measurements are summarized in Fig. 1. We ex-
tracted f from about 1300 images with ~� and U=t each up
to 100 [27]. The green dashed line corresponds to a con-
stant atom number (N2D � 3500) path in the U=t� ~�
plane. Each red oval marks the measured value of ðU=tÞc
when MI first appears for a different N2D, its width and
height represent the uncertainty in the measurement [28].
All data points are shaded according to the side of the
transition on which they are: SF in light grey and the
presence of MI in dark grey.

Figure 1 also displays the QMC state diagram [7]. The
continuous curve shows the expected first appearance of a
MI; the agreement with this result is obtained with no
adjustable parameters. The deviation from vertical of the
upper portion of this curve, reproduced by the data, differs
from the LDA prediction. Linear fits for the measured
(yellow dashed line in Fig. 1) and predicted transition
boundaries, for ~� > 20, intersect the horizontal axis at
angles �exp ¼ 85:5ð27Þ� and �QMC ¼ 83:7ð3Þ� respec-
tively, suggesting the breakdown of LDA near the transi-
tion. The universal character of the state diagram is re-
vealed in the U=t� ~� plane: it is independent of N2D or �
and of the validity of the LDA [7]. The discrepancy for ~� <
15 is expected due to increased sensitivity to thermal
effects at low density where the SF transition temperature
is extremely low.

During the preparation of this Letter we learned of a
similar experimental technique applied to a 2D Bose sys-
tem in the higher temperature BKT regime [29].
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