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The assumption of a certain hierarchy of soft ferromagnet energy terms, realized in small enough flat

nanoelements, allows us to obtain explicit expressions for their magnetization distributions. By minimiz-

ing the energy terms sequentially, from the most to the least important, magnetization distributions are

expressed as solutions of the Riemann-Hilbert boundary value problem for a function of complex variable.

A number of free parameters, corresponding to positions of vortices and antivortices, still remain in the

expression. Thus, the presented approach is a factory of realistic Ritz functions for analytical (or

numerical) micromagnetic calculations. Examples are given for multivortex magnetization distributions

in a circular cylinder, and for two-dimensional domain walls in thin magnetic strips.
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Complex analysis is a natural language for expressing
the solutions of many physical problems [1], like two-
dimensional electrostatics, planar flows of ideal incom-
pressible fluid, 2D problems of theory of elasticity, heat
flow and, more recently, many-body wave functions [2] of
electrons involved in the fractional quantum Hall effect. In
all these cases, a certain set of physical assumptions were
identified, permitting us to map the complex calculus to a
subset of physical problems in a particular domain. The
goal of this work is to do the same for nanomagnetics,
expressing magnetic structures in flat cylindrical nanoele-
ments via analytic functions of a complex variable, em-
ploying the conformal mapping to account for element
shapes.

Consider a cylinder with an arbitrary face shape, shown
in Fig. 1 together with a Cartesian coordinate system ~r ¼
fX; Y; Zg. Its face is denoted by D and its thickness is L.
Supposing that the cylinder is made of soft ferromagnetic
material with saturation magnetization MS and the ex-
change stiffness C, one can introduce the normalized mag-

netization vector ~mð ~rÞ ¼ fmX;mY;mZg ¼ ~Mð ~rÞ=MS,
j ~mj ¼ 1 and, classically [3], express its magnetic energy as
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is the exchange length (of the

order of 20 nm for typical soft magnets), ~r ¼
f@=@X; @=@Y; @=@Zg, ~hD½ ~m� is demagnetizing field, cre-
ated by the magnetization distribution ~mð~rÞ. Square brack-
ets denote the functional dependence (on the whole
function, as opposed to its value at a particular point).

Both e and ~hD are functionals of ~m.
In the static case with no electric currents the magnetic

charge formalism [3] can be used for calculating ~hD by first
expressing it as a gradient of a scalar potential function

~hD ¼ ~ruð~rÞ, which is, in turn, a solution of the Poisson

equation ~r2
u ¼ � with the requirement (due to the finite

size of the particle) that both j~rju and j~rj2jruj are finite as
j~rj ! 1, � ¼ ~r � ~m is the density of magnetic charges (on
the surface they are proportional to the normal component

of ~M).
Minimizing the energy functional (1) one would recover

both ground and metastable magnetization distributions in
the particle. Unfortunately, the general analytical solution
of the resulting system of coupled nonlinear partial differ-
ential integral Euler equations is possible only in a very
few cases (most notably for the magnetization states of
small ellipsoidal particles [4]). In general case approxima-
tions are necessary.
In the following, instead of minimizing all the energy

terms simultaneously, the sequential minimization will be
adopted. The energy terms are first sorted from the most
important to the least important. We also start with the set
of all possible functions. Then, in order of decreasing
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FIG. 1 (color online). A cylinder with Cartesian coordinate
system axes.
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importance of terms, we sieve the current set of functions,
keeping only the ones, minimizing (extremalizing, to be
precise) the current term. The procedure is repeated with
the remaining functions and remaining terms. The question
is then how far we can go and how many functions remain
at the end? The final functions, constructed in this way are,
obviously, influenced the most by the first considered
(more important) terms.

To reduce the dimensionality of the problem, let us
restrict consideration to the particles in the form of planar
cylinders, by starting not from the set of all possible 3D
functions ~mð ~rÞ, but from 2D functions, assuming that the
cylinder is thin enough that the magnetization distribution
is independent on Z, that is @ ~mð~rÞ=@Z ¼ 0. Then it is
convenient to introduce the complex coordinate z ¼ X þ
{Y, { ¼ ffiffiffiffiffiffiffi�1

p
. The set of functions can be sieved further by

restricting the length of the magnetization vector j ~mj ¼ 1,
defining it via stereographic projection

mX þ {mY ¼ 2wðz; �zÞ=ð1þ jwðz; �zÞj2Þ;
mZ ¼ ð1� jwðz; �zÞj2Þ=ð1þ jwðz; �zÞj2Þ; (2)

where the line over the variable means complex conjuga-
tion ( �z ¼ X� {Y) and the newly introduced complex func-
tion of the complex variable wðz; �zÞ is not necessarily
holomorphic (that is, not necessarily differentiable) but
just an arbitrary relationship between two complex num-
bers, as noted by its explicit dependence on �z.

To sort the energy terms, we first note that there are no
magnetic monopoles and, thus, the total magnetic charge
of the particle (consisting of volume charges, proportional

to ~r � ~m, and surface charges, proportional to the normal
component of ~m at the surface) is zero. As the particle is
shrinking, the positive and negative magnetic charges
move closer together and so their positive self-energy is
more and more compensated by their negative interaction
energy. Thus, in small enough particles exchange interac-
tion is more important than magnetostatic. It is more
important to minimize the exchange energy even at a
cost of having some magnetic charges.

Magnetic charges are also different. There are volume
and surface ones. It can be deduced from very general
considerations that for small particles the surface effects
dominate. Thus, the volume charges are the least important
in our case. Noting that planar cylinders have two surfaces:
face and side, let us also distinguish between two corre-
sponding types of surface charges. Of these, the face
charges are more important to reduce, because the face is
bigger.

Thus, let us assume the following order of sequential
minimization: exchange energy, energy of face charges,
energy of side charges, and, finally, the energy of volume
magnetic charges.

Introducing complex derivatives @=@z ¼ ð@=@X �
{@=@YÞ=2, @=@�z ¼ ð@=@Xþ {@=@YÞ=2 the exchange en-
ergy density can be represented as
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Putting to zero the first variation of integral of this density
we get the following Euler equation
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This equation is nonlinear, it has several families of solu-
tions (their complete set is still unknown). The first family
was found by Belavin and Polyakov [5]. These solutions
are called ‘‘solitons’’ and correspond to w ¼ fðzÞ being an
arbitrary analytic function (that is @w=@�z ¼ 0). This is
obvious in complex notation, in the original work [5]
derivation was much more involved. There are much
more particular solutions of this Euler equation [6,7], but
Belavin and Polyakov solitons are the only ones, having
finite energy in an infinite ferromagnet [8]. In restricted
thin film geometry other solutions of this Euler equation
start to become relevant.
Another family of solutions was discovered by David

Gross [9], they are called ‘‘merons’’ and expressed as

wðz; �zÞ ¼ fðzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ �fð �zÞ

q
, which can be verified by direct

substitution. Here fðzÞ is again an arbitrary analytic func-
tion. Merons have jwj ¼ 1 and, consequently from (2),
mz ¼ 0 everywhere. There are no magnetic surface
charges on the cylinder faces (and so the magnetostatic
energy is at absolute minimum [3], zero). The exchange
energy density of merons, unfortunately, has nonintegrable
singularities at zeros and poles of fðzÞ, making the ex-
change energy divergent for any nontrivial fðzÞ. This di-
vergence can be avoided at a cost of some face magnetic
charges by joining solitons and merons continuously

wðz; �zÞ ¼

8>><
>>:
fðzÞ=e1 jfðzÞj � e1

fðzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ �fð�zÞ

q
e1 < jfðzÞj � e2

fðzÞ=e2 jfðzÞj> e2

; (5)

for an arbitrary analytic function fðzÞ and two arbitrary real
constants 0< e1 < e2 <1. Being composed of solutions
of Euler equation, this function is locally extremal to the
exchange energy functional, while the amount of face
magnetic charges can be controlled by selection of the
free constants e1 and e2. These constants [10] allow us to
tighten the meron arbitrarily close to singularities and
zeroes of fðzÞ trading between the decrease of the magne-
tostatic energy of face charges and the increase of the
exchange energy of the particle.
The next energy term to sieve solutions through is the

magnetostatic energy of side charges. Unlike the energy of
the face charges, this energy can be completely put to zero
(its absolute minimum) without conflict with more impor-
tant terms we have already minimized. The corresponding
requirement [11] for fðzÞ is to find a function fðzÞ analyti-
cal in the region D in such a way that Re½fð�Þnð�Þ� ¼ 0
(no magnetization components normal to the side), where
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� 2 C ¼ @D is the boundary of D, and nð�Þ ¼ nxð�Þ þ
{nyð�Þ is the complex normal to C. This is an instance of the
well known linear Riemann-Hilbert problem [1].

This problem and the resulting magnetization distribu-
tions were already considered in Ref. [11] by reducing the
Riemann-Hilbert problem to the problem of Hilbert
Privalov on the unit disk, as described in Ref. [1]. This
procedure, however, misses some of the physically relevant
solutions. To solve the Riemann-Hilbert problem in this
work the regionD is conformally mapped to the upper half
plane t, such that Imt > 0. Then, the functions with non-
essential singularities, satisfying the condition of no nor-
mal component to the boundary of the upper half plane
(that is, real on the real axis) can be written, generally, as
rational functions with real coefficients

fðtÞ ¼
P

m
i¼0 git

iP
n
i¼0 hit

i ; (6)

where gi and hi are arbitrary real numbers.
In the case of the arbitrary shape of the particle face, let

us introduce the conformal mapping z ¼ MðtÞ, transform-
ing the upper half plane t into the particle face z. Also note
that the roots of the polynomial with real coefficients are
either real or come in complex conjugate pairs. Since the
roots of the numerator and denominator correspond to
zeros and poles of fðzÞ, that is, to soliton ‘‘hats’’, covering
meron singularities (5), it is convenient to express these
polynomials directly in terms of their roots. Suppose that
the numerator (denominator) hasmp (np) pairs of complex

roots at points ai, �ai (ci, �ci), such that Imai > 0 (Imci > 0),
as well as mr (nr) real roots bj, Imbj ¼ 0 (dj, Imdj ¼ 0).

Then m ¼ 2mp þmr, n ¼ 2np þ nr and the function fðzÞ
can be written parametrically as

f¼M0ðtÞ
Qmp

i¼0ðai � tÞð �ai � tÞQmr

j¼0ðbj � tÞQnp
i¼0ðci � tÞð�zi � tÞQnr

j¼0ðdj � tÞ z¼MðtÞ:

(7)

This expression, together with (5) and (2), gives the family
of Ritz functions for magnetization distributions, depend-

ing on a number of parameters ~a, ~b, ~c, ~d, e1, and e2.
Let us now show some examples. The case of the

magnetic disk is, probably, the simplest. The most general
form of the conformal transform of the upper half plane to
the unit disk is

MðtÞ ¼ � e{�ðhþ {tÞ
h� {t

; (8)

where h is an arbitrary real number and � 2 ½0; 2�Þ. In the
case of m ¼ 2, n ¼ 0 this solution coincides with the one,
obtained in Ref. [11], and further, in a particular case of
centered vortex, with an ansatz of Usov and Peschany [12].
For bigger m and n a particular multivortex magnetization
distribution in a cylinder is shown in Fig. 2 with parame-
ters, chosen for plausibility.

The other interesting case is that of a two-dimensional
domain wall in a thin strip. This problem had been treated

numerically [13], but has resurfaced recently in connection
with the idea of racetrack magnetic memory [14]. Noting
that the conformal map from the upper half plane to the
infinite strip 0< Imz < 1 is

MðtÞ ¼ � logt

�
; (9)

where additional parameters, related to a certain freedom
to transform the upper half plane to itself, were omitted for
clarity. Some of the possible domain wall configurations
are shown in Fig. 3. It is trivial to extend these expressions
to model the whole racetrack, containing many interacting
domain walls of different types.
Concluding the step-by-step minimization procedure,

we have sieved the set of all possible magnetization dis-
tributions to obtain a much smaller set, parametrized by a
finite number of scalar parameters. The values of these
remaining parameters, corresponding to ground and meta-
stable states of magnetization, can be found by minimizing
the total energy (1). This problem is much simpler, com-
pared to the full solution of corresponding Euler equations,
and is tractable analytically in a number of interesting
cases, e.g., like that of the displaced magnetic vortex [15]
or of ‘‘C’’-type low-symmetry magnetic states in circular
cylinders [16].
It is also possible to generalize these Ritz functions by

relaxing the strict requirement of no normal magnetization
components introducing an additional parameter, corre-
sponding to rescaling the particle. This works very well
for treatment of quasiuniform states in circular cylinders
[17], reproducing quite intricate measurements [18]. This
generalization can be applied to strips (by rescaling their
width) and should produce a very precise set of Ritz
functions.
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FIG. 2. A multivortex magnetization distribution in a circular
cylinder, comparable to the numerical simulations of Ref. [20]. It
is Eqs. (2), (5), (7), and (8) with h ¼ 4, � ¼ �=4, e1 ¼ 0:01,

e2 ¼ 400, ð ~a; ~b; ~c; ~dÞ ¼ ðf{;�4þ 4{; 6þ 7{g; f3g; f2{; 6þ 2{g; fgÞ.
There are three vortices, two antivortices, and two side-bound
Skyrmions (their centers, where the magnetization vector is
vertical, are marked with dots).
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There is no ‘‘real’’ unchangeable by evolution topologi-
cal charge in finite particles, since the energy barrier,
separating the states with different polynomial degrees of
numerator or denominator in (7), is finite (unlike the case
of infinite ferromagnet, considered by Belavin and
Polyakov). Nevertheless, since the exchange interaction
is ‘‘the most important’’ in the particles of a few exchange
lengths in size, the difference m-n has a pronounced effect
on the magnetic states and still remains useful for the
purpose of classification even though there is no direct
proportionality between the total energy and jm-nj as in
the Belavin-Polyakov case.

While the exchange energy of magnetization distribu-
tions (7), consisting both of soliton and meron parts, can be
calculated analytically in general form by the Greene and
residue theorems, magnetostatic energy in (1) currently has
to be calculated on a case-by-case basis. Finding a generic
expression for magnetostatic energy of magnetization dis-
tributions (7) is still an open problem. The absence of such
an expression and long-range character of dipolar interac-
tion (resulting in substantial dependence of its energy on
particle shape) makes it difficult to estimate the relative
importance of energy terms a priori for certain particle
sizes. As with other approaches involving trial functions
the rigorous statement is that the energy of these approxi-
mate solutions if always higher than that of exact ones.
This allows us to check the validity of obtained results
a posteriori. As a rule of thumb, for particles with the

dimensions of a few LE the magnetic states, their energies
and various derivatives, are usually in a good agreement
with experiment. For larger particles, results may vary.
Functions (7) are so versatile that they might be useful

on their own, beyond the Ritz method. For example, to
enhance the resolution of magnetic force microscopy, im-
ages of small particles by fitting the positions of topologi-
cal singularities, comparing calculated and measured
forces on the tip.
Magnetization dynamics can be considered separately

[19] on top of these distributions.
The author would like to thank Andrei Bogatyrev from
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the expression (6).
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FIG. 3. Some domain wall configurations in thin strip: (a) the
vortex wall (comparable to the numerical simulation of
Ref. [13]); (b) antivortex wall; (c) and (d) two different arrange-
ments of a pair of two vortex walls. As before, dots mark the
singularities in the meron. It is Eqs. (2), (5), (7), and (9) with

e1 ¼ 0:01, e2 ¼ 400, and ( ~a, ~b, ~c, ~d): (a) ðfIg; f0g; fg; f5;�1=5gÞ;
(b) ðfg; f0; 5;�1=5g; fIg; fgÞ; (c) ðf90{; {=90g; f0g; fg; f360; 1=360;
�20;�1=20gÞ; (d) ðf90{; {=90g; f0g; fg; f360;�1=360;�20;
1=20gÞ.
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