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The impossibility of measuring noncommuting quantum mechanical observables is one of the most
fascinating consequences of the quantum mechanical postulates. Hence, to date the investigation of
quantum measurement and projection is a fundamentally interesting topic. We propose to test the concept
of weak measurement of noncommuting observables in mesoscopic transport experiments, using a
quasiprobabilistic description. We derive an inequality for current correlators, which is satisfied by every
classical probability but violated by high-frequency fourth-order cumulants in the quantum regime for

experimentally feasible parameters.
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Every measurement in quantum mechanics is in principle
described by the projection postulate [1]. However, in
practice perfect projective detectors often do not exist and
the measurement encounters a finite error. This can be
resolved by replacing the projection by Kraus operators
defining a positive operator-valued measure (POVM)
[2,3]. The Kraus operator can be continuously changed
from projection—strong measurement (exact)—to almost
identity operator—weak measurement (with huge random
error). Effectively, a POVM means that we take detector’s
degrees of freedom as part of the considered Hilbert space
and make a projective measurement on the detector.
Obviously, in that case the detector-system coupling defines
the strength of the measurement of the system. The equiva-
lence of a POVM and the projective measurement follows
from Naimark theorem [4]. The actual modeling of a de-
tection scheme by POVM is a long-standing problem [5-7].

The interpretation of the results of a weak measurement
can lead to paradoxes. For instance, if a weak measurement
of A performed on the state p is followed by a projection
B then the weak value can be defined B(A) o = Tr(BA p)/
Tr(B p) [8]. The unusual feature of the weak value is that it
can exceed the spectrum of A, which obviously contradicts
our classical intuition. The strange properties of weak
measurements have been confirmed experimentally in
quantum optics [9], while experiments in solid state phys-
ics are proposed [10]. The interpretation of recent experi-
ments on current fluctuations in mesoscopic junctions in
the quantum regime [11] is impossible in terms of a usual
probability [12]. Instead, we proposed to consider a weak
current measurement, which implies a large background
noise, but avoids the paradox of a certain average square to
become negative. The necessity of a weak measurement
lead to corrections in the observed finite-frequency noise;
however, a direct experimental proof of this scheme was
not feasible.

In this Letter, we first construct a general formula for a
quantum quasiprobability, which does not depend on the
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details of the measurement apparatus and confirms the
previously used formulas [12]. Second, we propose a
scheme to test experimentally its negativity in frequency
domain. To this end, we will derive a classical inequality
for high-frequency current correlators of the form

C2 = (Chy + 2782 /80)(C,yy + 2782, /80'). (1)

Here C,, = {{I(0)I(—w)(0)I(—w")))/ty is a fourth-
order correlator and S, = {({(w)I[(—w)))/t, the
frequency-dependent current noise, where f; is the total
(long) measurement time and dw is the bandwidth of the
detector (S and C are independent of 7). Inequality (1) is
satisfied by every classical stochastic process, but can be
violated by high-frequency correlators in the quantum
regime of a mesoscopic junction for experimentally acces-
sible parameters. We believe our proposed violation of the
classical inequality (1) can be realized with the existing
techniques [11]. This violation will be a proof of negative
values of the quasiprobability. Although it is not necessary
to explain the strange features of weak values [8], it offers
an alternative test of nonclassicality similar to the Wigner
function [13]. Moreover, the quasiprobabilistic interpreta-
tion can be easily generalized to an arbitrary sequence of
measurements. This interpretation facilitates the transfer to
mesoscopic junctions and we present an example, how the
negativity of the quasiprobability can be proven in a tunnel
contact and discuss the experimental feasibility.

We will construct the quasiprobability by a deconvolu-
tion from a suitable POVM. The real parts of weak values
can then be expressed as averages with respect to the
quasiprobability. Let us begin with the basic properties of
a POVM. The Kraus operators K(A) for an observable
described by A with continuous outcome A need only to
satisfy [ dART(A)K(A) = 1. The act of measurement on
the state defined by the density matrix p results in the new
state p(A) = K(A)pKT(A). The new state yields a normal-
ized and positive definite probability density p(A) =
Trp(A). The procedure can be repeated recursively for an
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arbitrary sequence of (not necessarily commuting) opera-
tors Ay, ..., A, [14],

pAL, ... A) =KADpAL ..., A_DKT(A,).

The corresponding probability density is given by
p(Ay,...,A,) =Trp(A,, ..., A,). We now define a family
of Kraus operators, namely K,(A) = (2A/m)/* X
exp(—A(A — A)?). It is clear that A — oo should corre-
spond to exact, strong, projective measurement, while
A — 0 is a weak measurement and gives a large error.
We also see that strong projection changes the state (by
collapse), while A — 0 gives p(A) ~ p, and hence this case
corresponds to the weak measurement. However, the repe-
tition of the same measurement k times effectively means
one measurement with A — kA so, with kK — oo, even a
weak coupling A < 1 results in a strong measurement. For
an arbitrary sequence of measurements, we can write the
final density matrix as the convolution

prd) = [DaesanTaac-4) @
k

with g,(A) = e 244" \2A, /7. Here, A= (Ay,..., A,)
A= (A,...,A,), and DA = dA,...dA,. The quasiden-
sity matrix 0 is given recursively by

dx 7,XA[ do
0x(4) = fzwe N/ T

X ei()(/2+¢)‘4" é)\(Al’ PR A

—$*/24,

_)elx/2= DAL (4)

with the initial density matrix 0 = p for n = 0. We can
interpret g in (3) as some internal noise of the detectors
which, in the limit A — 0, should not influence the system.
We define the quasiprobability @, = TrQ, and abbreviate
© = Q. In this limit (4) reduces to
6(4) = [[Sremnenhipn,, 4, et s)
Note that @y o, = @, so the last measurement does not
need to be weak (it can be even a projection), and marginal
distributions are consistent with absence of a measurement,
JdAe(A) =o(...,Ai_1, Ag+1, .. .). In the case of com-
muting operators the qua51pr0bab111ty reduces to the usual
probability 0 = pe. For A, = £and A, = p with[%, p] =
ih we obtain the Wigner function o(x, p) = o(p, x) =
W(x, p) [13]. The definition preserves locality—for
(A, p,) and (B, p,) acting in two separate Hilbert spaces
we have p = p,p, — 0(A, B) = 0,(A)0,(B). The aver-
ages with respect to @ are easily calculated by means
of the generating function (5), e.g., (A), = TrA p,
(AB), = T{A, B}p/2, (ABC), = TrC{B{A, p}}/4 for
= (A, B, C). This ordering of operators is called
time symmetric [15,16]. To relate the quasiprobability to
weak values, we have to consider two measurements: A
and B. The real part of the weak value is just the average
Reg(A), = (A)op With respect to the conditional quasi-
probability ¢(A|B) = o(A, B)/o(B). The complex weak

values require a different interpretation [8], which can
also be generalized to sequential measurement [17].

We shall apply the above scheme to the measurement of
current /(#) through a mesoscopic junction in a stationary
state. For a moment, we forget about quantum mechanics
and recall basic properties of stochastic processes [18],
applying them to 81 = I — (I). It is convenient to define
the noise (second cumulant), S(a, B) = 276(a + B)S, =
(81(a)8I1(B)), and the fourth cumulant C(a, 8,7y, 1) =
278(a + B+ v + n)C(a, B, v, n) with

Cla, By, m) = (81(a)SI(B)1(y)81(n)) — S(a, B)S(y, n)
— S(e, y)S(B, 1) — S(a, m)S(y, B).  (6)

Here and throughout the text we use Latin arguments in
time domain and Greek ones in frequency domain, related
by a(w) = [dte™'a(r). Note, that the delta function of the
frequency sum has a cutoff of the order of the measuring
time 7, (larger than all relevant time scales of the system),
which in some following expressions is a simple prefactor
and does not enter final conclusions.

Let us define the fluctuating noise spectral density X,

©+ §()8I(—a)da with w.+ = w * dw/2, for which
we obtain the average fluctuations

(BX P/tg= | CopdadB + 27 [ “" $2da,

o )
(86X, 86X\ /1o = f da f " CopdpB,

where 6X = X —(X) and C,5 = C(a, —a, B, —B). The
intervals [w_, w,] and [w', w/.] are nonoverlapping.
Considering classical correlators of 6X at different fre-
quencies we obtain the Cauchy-Bunyakovsky-Schwarz
inequality
<8Xw 6Xa)’ >2
B= =1 ®)
((8X,)*X(8X,)*)

If we choose, e.g., 0 = o' < @', < w_, the correlators
correspond to a low- and high-frequency measurement.
Furthermore, assuming that § and C are constant within
the bandwidth Sw, Sw’, the inequality (8) takes the form
(1) mentioned in the introduction. It is interesting to note,
that for frequency-independent (classical) noise the in-
equality is always satisfied.

Turning to the quantum case we stress that continuous
measurement cannot be strong as we would end up with the
quantum Zeno effect and suppress the dynamics of the
system completely [19]. This follows from Eq. (4) for
Heisenberg operators A, = A(f, = kA) and a finite 7, =
nA. In the limit ¥ A; — o0 and n — o0, 0 becomes diago-
nal in the eigenbasis of A and freezes. Nonclassical behav-
ior of quantum correlations in the limit of weak
measurement can also be shown using the Leggett-Garg
inequality [20], which involves time-resolved second order
correlations assuming that the observables are bounded.
Our inequality is more general as we do not require
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bounded observables but we need fourth-order correlations
in the frequency domain instead, which is more suitable for
electric current measurements.

We denote the measured current operator in the
Heisenberg picture by 1(7). Stron g, projective measurement
can be performed only if we are interested in the long-time
limit. The finer the time resolution we want the weaker the
measurement must be as [1(7), I(r')] # 0. We define a gen-
erating functional of the quasiprobability in the weak
measurement limit by

oll] = [ Dye [ xwiwa

% Tr[q—'efi)((t)i(t)dt/zﬁ T efi/\/(t)i(t)dt/z] ©)

with T (7") denoting (anti)time ordering. This represents a
straightforward generalization of the generating function
obtained from the trace of (5), in which the time-variable
labels the subsequent measurements. The averages of cur-
rent powers (noise and third cumulant) have been already
calculated [7,21-25] with respect to the quasiprobability
(without introducing this notion) and measured [11]. In
experiments, the large measured offset noise plays the role
of g in (3) preventing paradoxical results [12]. We empha-
size that in long-time averages the quasiprobability be-
comes a conventional probability and reproduces the
formula for the usual full counting statistics [26], also
confirmed experimentally [27,28].

We consider a quantum point contact described by fer-
mionic operators around the Fermi level [21]. Each opera-
tor §4; with 7 = (n, o) is denoted by mode number
n € {1..N} and spin orientation o and A = L, R for left
and right going electrons, respectively. Each mode can
have its own Fermi velocity v, and transmission coeffi-
cient T, (reflection R, =1 — T,). We will assume non-
interacting electrons and energy- and spin-independent
transmission through the junction. The Hamiltonian in-
cluding a voltage bias V reads

A= 3 [adin, 3,000 ~ L= &)

+ 4L L) Pra(—) + () ()]

= eVOWP L) P1a(0) + Pk () Pra0] (10)
The fermionic operators satisfy anticommutation relations
{a(0), () =0 and {r,(x), P ()} = 8,8(x — x')
for a, b = Lni, Rm. The transmission coefficients are 7,, =
cos(q,/hv,). We apply (9) to the current operator | =
S aev, g?f{ﬁ(0+)r,2fLﬁ(0+) — L < R and the density matrix
p = CXP(_[:I/kBT)-

To find conditions in which the inequality (1) is violated,
it is enough to consider the case V = 0. Using Eq. (9) we
obtain S, = hGw(a) and C,5 = hFGe*(w(a) + w(B))/2
[21-23]. Here we denote w(w) = w coth(hw/2ksT),
conductance G = Y, e’T,/mh and Fano factor F =
S R, T,/>,T,. In the tunneling limit, 7, < 1, for a
finite bias voltage V we only need to replace w(w) with

w(w + eV/h) + w(w — eV/h))/2 and F = 1. For T =
35 mK, dw = Sw’' =20’ =27 X 200 MHz, @ = 27 X
6 GHz, G™' = 500 kQ and V = 0, we get B = 1.4, which
contradicts our classical expectation (8) and clearly shows
that the quasiprobability @ must take negative values.
Generally, the violation occurs for sufficiently small G <
Gmin» as shown in Fig. 1(a). At eV =0 and 6w =20 >
dw' =2w' = kpT/h, we have G, = 3Jw/w'Fe?/2h.
For larger conductance, one can still find a reasonable
range of parameters for the violation at G~! = 5 k), as
shown in Fig. 1(b). The strongest violation occurs at low
temperature and voltage but at large bandwidth.
Unfortunately, the typical experimental conductance is
with G™! = 50 Q [29] even larger and would require
either w ~ 27 X 1 THz or a temperature ~1 mK. How-
ever, we can make the reasonable assumption that all
modes of the junction are independent and replace the
inequality (1)—uvalid for the whole junction—by the same
one for a single mode. If we can assume that the modes
are independent and have similar transmission coefficient
(T, < 1) we can simply divide C and S by the number of
modes in (1). Note that C enters there linearly while S
enters quadratically, so effectively we weaken the contri-
bution from the second cumulant. For a tunnel junction we
can thus replace G by G/N, where N, is a lower bound of

a) 25 kgT=0 ——
kgT=0.5he —
o keT=ho' ——
L
Ny 1.5 Fdw'=20, dw=20-40’
EC
(5@ 1k

05

0
2 3 4 5 6 7 8 9 10
o/w’
b) a4
35 kgT=eV=0 ——
sl kgT=0, eV=2hey —
ev=0, kgT=he ——
25
m 2 FOW'=2w', dw=2m-4w’ G l=5kQ
15
1
05
0 1 1 1 1 1 1 1 1 1 J

10 20 30 40 50 60 70 80 90 100
o/’

FIG. 1 (color online). (a) The minimal value of the conduc-
tance G which satisfies the inequality (8) for the mesoscopic
junction at zero voltage. The nonclassicality occurs for G <
Gmin- (b) The dependence of inequality parameter B [given by
(8)] for a the tunnel junction as function of the high frequency.
Below the line at 1 is the classical regime. Either finite voltage
and/or temperature lead to suppression of B and result in the
necessity to measure at higher frequencies.
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the contributing modes (7, > 0), which must be larger than
G/ e?. The results in Fig. 1(b) are valid, for example, for
Ny = 100 < (h/2€?)/50 Q = 258. In this case, it is nec-
essary to ensure that most of the modes contributing to the
transport have small transmission eigenvalues.

The cumulants are never measured directly. The second
cumulant always contains a large offset noise generated by
detector and amplifier and effectively described by A in g.
The offset noise can presumably be subtracted as it is due
to detector’s amplifier. The offset noise may be smaller in
the case of a many-mode tunnel junction and one way
around is to measure cross correlations by different detec-
tors and amplifiers [12]. The fourth cumulant should also
contribute to photon counting statistics [30,31], but in the
limit dw — 0 the photon statistics is dominated by the
second cumulants in (1).

We have shown that the unusual properties of weak
measurements can be interpreted in terms of a real quasi-
probability, which can take negative values. Our interpre-
tation agrees well with predictions and measurements of
the current fluctuations in mesoscopic junctions. Its direct
confirmation would be the measurement of high-frequency
fourth-order averages of the current though the junction.
By a violation of the inequality (1), the negativity of the
quasiprobability could be directly demonstrated. Finally,
the separation between detector and the system is some-
what arbitrary. One could argue that simply adding some
noise can restore the positive probability. This is why an
experimental estimate of the detector noise g or the
strength of the measurement A is also desirable.
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