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The dependence of hopping conductance on temperature and voltage for an ensemble of modestly long

one-dimensional wires is studied numerically using the shortest-path algorithm. In a wide range of

parameters this dependence can be approximated by a power law rather than the usual stretched-

exponential form. The relation to recent experiments and prior analytical theory is discussed.
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Localization by disorder is a common cause of insulat-
ing behavior of low-dimensional electron systems. If the
system size greatly exceeds the localization length, the
transport at low voltages V and temperatures T is governed
by the variable-range hopping (VRH) [1]. The electric
current IðV; TÞ and the conductance GðV; TÞ � IðV; TÞ=V
have a (stretched) exponential behavior. For example, in
the Ohmic regime

G� � Gð0; TÞ / exp½�ðT�=TÞ��; 0<� � 1: (1)

Over the past decade, observations of different laws,

I / VT�; V � ð2�=�ÞT; (2)

/ V�þ1; V � ð2�=�ÞT; (3)

have been reported in systems as diverse as carbon nano-
tubes [2–9], InSb [10] and GaAs [11,12] quantum wires,
NiSe3 whiskers [13], polymer nanofibers [14,15], inor-
ganic [9,16] and organic nanowires [17], as well as poly-
mer films [18,19]. The coefficients �,�, and � vary among
different materials and different samples of the same
material.

A five-parameter formula frequently used to fit the
experimental data is

I ¼ c0T
�þ1 sinh
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For �0 ¼ � the asymptotic behavior of IðV; TÞ is given by
Eqs. (2) and (3). Agreement with Eq. (4) was advocated as
evidence for tunneling into Luttinger liquid (LL) [20]—a
one-dimensional system with nonperturbative interaction
effects. (For strong interactions the LL can also be modeled
as a 1D Wigner crystal [21].) In this picture, the system
contains a tunneling barrier, e.g., a poor contact, but is
otherwise clean and free of localization. The power laws
are due to renormalization of this barrier by many-body
effects. However, there is a problem with this interpreta-
tion. The actual calculations [22–26] within the LL model
give � ¼ � and � ¼ �0 ¼ 1, which is not always consis-
tent with the parameters of the empirical fits (notable
exceptions are Refs. [3,11]).

Another reason to doubt the relevance of the LL effects
in some of these experiments is the fact that the systems

studied are neither perfectly clean nor truly 1D. They are,
typically, collections of many parallel 1D channels, whose
total number ranges from several hundred to many thou-
sands, each containing multiple impurities.
In this Letter we show that in such quasi-1D systems the

conventional mechanism of transport, which is the VRH,
can also lead to Eqs. (2)–(4). This is because at low enough
T the hopping length is not much smaller than the length L
of the wires. In this case, the VRH conductance deviates
from the usual formula, Eq. (1). The hopping is dominated
by hopping paths that consist of a few approximately
equidistant hops [27–30]. Although rare, such configura-
tions can always be found in a sample if the number of
channels is large enough. Hence, despite mesoscopic fluc-
tuations that accompany rare events, GðV; TÞ can be a
smooth quasi-power-law function.
Our results are illustrated in Fig. 1. They are obtained

numerically following the approach used in our previous
work [31], with two improvements: (i) we keep full Fermi-
Dirac and Bose-Einstein factors in the hopping rates rather
than replace them by exponentials; (ii) we streamline the
treatment of the boundary conditions at the contacts, see
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FIG. 1 (color online). Main panel: Collapse onto the ‘‘univer-
sal curve’’ of Eq. (4) (solid line) obtained by plotting the
numerical results for L ¼ 30 and a ¼ 4 (symbols) as I=T�þ1

vs V=T, using � ¼ 1:75, � ¼ 1:1, and � ¼ 1. The temperatures
are listed in the legend in the units of � ¼ 4T0. Inset: Same data
plotted as I vs V.
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below. In the inset of Fig. 1 we show a set of I-V curves
computed for a set of fixed T. In the main panel, we
collapse them onto a single ‘‘universal’’ curve described
by Eq. (4).

Let us compare the quality of the data collapse to those
in the aforementioned experiments [8,13–19]. The range
of T shown in Fig. 1 is a factor of 30. In the experiments,
Eq. (2) rarely spans more than one decade in T. The range
of V, where the non-Ohmic conductance follows the uni-
versal curve in the experiments, is usually less than a
decade. In our case, it is wider than one decade. Still, the
dependences that we find numerically are not true power
laws. If we look at wider ranges of V and T, the deviations
are seen. Therefore, our numerical results for the VRH
transport, just like the experiments, demonstrate only the
apparent power-law behavior (APLB) restricted to a cer-
tain parameter range.

In our calculations, this range is located near the inflec-
tion point of the curve lnG� vs lnT; see Fig. 2. Near the
corresponding temperature Tinf the curve can be approxi-
mated by a straight line with a certain slope �, in agree-
ment with Eq. (2). Further analysis, following Refs. [27–
29], which is discussed below, leads to analytical estimates

� ¼ Ninf � 1� 2

Ninf

; Ninf ¼ c1

ffiffiffiffi
L

a

s
; (5)

�þ 1 ¼ c2�; � ¼ c3
2�a

L
; (6)

Tinf ¼ c4T0

a

L
; T0 � 1

ga
: (7)

Here g is the density of states and ci’s are coefficients of
the order of unity. In comparison, our simulations give� ¼
1:75, � ¼ 1:1, and � ¼ 1 for L=a ¼ 7:5. For L=a ¼ 12:5,

we get � ¼ 2:4, � ¼ 1:7, and � ¼ 0:6. This implies c1 �
1:1, c2 � 0:85, c3 � 1:2, and c4 � 0:4.
Our numerical results are comparable with typical ex-

perimental numbers. They are also consistent with the
observed trend that longer and more disordered wires
produce larger � and � but smaller �. A more detailed
comparison would require taking into account particular-
ities of a given set of samples beyond our generic model.
Because of individual variations in the nature of disorder
and the parameters of electron-phonon coupling, � and �
may acquire additional corrections of the order of unity.
Let us now give more details regarding the calculations.

We consider a system of localized states with random
energies "i (Fig. 3) distributed according to the Poisson
distribution with the average energy separation � ¼ 3. We
treat all "i as constants, independent of the applied current.
This is justified if electron interactions are weak [31]. The
x spacing between the sites is taken to be unity, so that the
density of states is g ¼ 1=� ¼ 1=3. The localization
length a is chosen to be 4. To avoid repeated negative signs
in the formulas, we take the electron charge e ¼ 1 to be
positive.
Let �i be the electrochemical potential of site i, then the

net current from site i to another site j is given by [32]

Iij ¼
�ij expð� 2

a xijÞ sinhð�i��j

2T Þ
coshð"i��i

2T Þ coshð"j��j

2T Þ sinhj "i�"j
2T j ; (8)

where xij � jxi � xjj, �ij ¼ G0j"i � "jj, and parameter

G0 of dimension of conductance is related to electron-
phonon coupling [1,29,33]. The problem is to determine
Iij and �i that satisfy the current conservation.

The analysis is simplified by the conventional assump-
tion that the transport is dominated by a single optimal path
of least resistance. Within this approximation, the current
does not branch; i.e., Iij ¼ I in each link of the path. The

total voltage drop V across the sample is the sum of voltage
drops �i � �j on the links. One can determine the optimal

path by finding the sequence of sites that gives the smallest
V for a given I [31].
Let us define auxiliary variables uI � lnðTG0=IÞ and

S � TG0

�ij

exp

�
2xij
a

�
cosh

"i � �i

2T
sinh

j"i � "jj
2T

: (9)

Solving Eq. (8) for �j, we obtain
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FIG. 2 (color online). The Ohmic conductance vs temperature
for L ¼ 30 (upper curve) and L ¼ 50 (lower curve) with a ¼ 4.
The dashed lines serve to illustrate the apparent linearity of the
curves near their inflection points (dots).
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FIG. 3 (color online). (a) A typical hopping path through the
wire (thick line). The thin line represents electrochemical po-
tential �. (b) A rare path [27–30] made of equal-length hops.
Here ��	 NT and �x	 Na, where N is the number of hops.
Weakly varying �ðxÞ corresponds to the Ohmic regime.
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�j ¼ T ln

�
e�i=2T � Se�uIþ"j=2T

e��i=2T þ Se�uI�"j=2T

�
: (10)

Unlike the internal hops, transitions between the source
electrode and the first site inside the sample (as well as the
last site and the drain) do not require phonons. This can be
accounted for by using

Sc ¼ 2G0

Gc

exp

�
2xij
a

�
cosh

�
"� �i

2T

�
(11)

in lieu of S. Here Gc is determined by the tunneling trans-
parency of the contact between the sample and the elec-
trode. We choose a representative value Gc ¼ 4G0. Note
that the numerator of Eq. (10) must be positive, which sets
a limit on the maximum current that can flow between sites
i and j.

To find the optimal path, we use a modified Dijkstra
algorithm [31], in which the ‘‘cost’’ of reaching site j
starting from the source equals ��j. The latter is calcu-

lated recurrently using Eq. (8). For each disorder realiza-
tion the resistance V=I is random, and by running the
simulations many times we can compute its probability
distribution. Taking the average over the latter as explained
in Ref. [31] we get the ensemble-averaged GðV; TÞ.

The results for the Ohmic regime (Fig. 2) were obtained
by choosing a very large uI ¼ 40 to ensure V � T. We
analyzed two different system lengths: L ¼ 30 ¼ 7:5a and
L ¼ 50 ¼ 12:5a. For L ¼ 30we generated an ensemble of
20 000 samples and for L ¼ 50 we used 10 000 samples in
order to average out the mesoscopic fluctuations.
(Actually, using 500 samples would give results of com-
parable quality.) Figure 2 clearly demonstrates more than a
decade of the APLB of Eq. (2) near the inflection points of
the curves. Note that this point is located at a lower
temperature for the longer sample.

Having determined the range of T where we get the
Ohmic APLB, we proceeded to analyzing the non-Ohmic
behavior of the system in this range of temperatures. To
this end we fitted the results for higher V to Eq. (4). For
L ¼ 30, Fig. 1, we found a good collapse in both the
Ohmic and non-Ohmic regimes. All curves in Fig. 1
were cut at V ¼ 2, since at that point the curves were
beginning to saturate as they approached the maximum
current possible in the system. The collapse obtained for
L ¼ 50 (not shown) was equally good. The quality of our
data collapse matches or exceeds that in the experiments
[8,13–19]. The values of the fitting parameters �, �, and �
have already been discussed (see more below).

Let us now examine how the APLB we have found
numerically can be understood in the light of established
theory of 1D VRH. According to this theory, transport is
characterized by several regimes. At low T, the conduc-
tance of the ensemble is dominated by rare paths with
nearly equidistant sites; see Fig. 3(b). This regime was
studied in Refs. [29,30,34] for two intermediate sites and
in Refs. [27,28] for a chain of many sites [35]. Adopting

the derivation in Ref. [27] to the 1D case we can show that
at a given T the main contribution to G� comes from the

chains ofN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L=	a

p
hops, where 	 is the solution of the

equation 	 ’ lnð	=LgTÞ. In addition, [29,30,36]

d lnG�

d lnT
’ N � 1� 2

N
: (12)

At T ¼ Tinf , we have 		 1, which yields Eq. (5).
For T > Tinf , the system enters the regime where the

transport is limited by rare highly resistive links—
‘‘breaks’’—on the optimal path [37–39]. As a result, the
Ohmic conductance, which can be derived from the for-
mulas of Ref. [39], obeys Eq. (1) with the coefficients

� ¼ 1

2
; T� ’ 2T0 ln

�
2Le

a

T

T0

�
: (13)

The concavity of the lnG� vs lnT curve is opposite in the
two temperature ranges, which creates the inflection point;
see Fig. 2.
The non-Ohmic transport is also characterized by an

S-shaped curve of lnI vs lnV, with its own inflection point.
For example, at T � Tinf , the theory [40] predicts

ln
V

T0

¼ � u2I
u2M

þ ln

�
8L=a

u2I

�
; uM �

ffiffiffiffiffiffiffiffi
2T0

T

s
: (14)

By the argument similar to that used in the Ohmic regime,
�þ 1 in Eq. (3) is determined by the maximum slope, i.e.,
the derivative of lnI with respect to lnV:

�þ 1 ¼ max

�
� duI
d lnV

�
¼ uM

4
¼

ffiffiffiffiffiffi
T0

8T

s
: (15)

We see that �þ 1 / T�1=2 is not a constant but decreases
with T, in qualitative agreement with experiments
[8,15,17]. This explains why the data collapse onto the
universal curve of Eq. (4) can be achieved only in a limited
range of T.
At T ¼ Tinf , Eq. (14) is at the border of its validity.

Hence, Eq. (15) gives only the order of magnitude esti-
mate, �þ 1 & �, which is the first part of Eq. (6). Finally,
to get � we note that the crossover to the T-independent
behavior in Eq. (4) takes place at �V 	 2�T. On the other
hand, according to Eq. (14), this occurs at uI 	 uM where
V=T0 	 LT=aT0. Combining these expressions, we re-
cover the second part of Eq. (6).
Formulas (5) and (6) predict numerical values and rela-

tions among�,�, and � that are in agreement with most of
the cited experiments [8,13–19]. Additionally, they pro-
vide a way of estimating the localization length a. For
example, taking parameters � ¼ 4:3, � ¼ 2:1, � ¼ 0:25,
L	 1 �m of a representative MoSe2 nanowire from
Ref. [16], we find a	 40 nm for this sample (W3).

Other samples measured in that work showed � / 1=
ffiffiffiffiffi
M

p
scaling with the number of transport channels M. In our
model the same scaling occurs if a / M, as in a weakly
disordered quasi-1D metal. In such a system a can be
enlarged by applying an external magnetic field [41].
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This is one convenient way to further test our model
experimentally. Alternatively, it may be possible to vary
the disorder strength and therefore a by electrostatic gat-
ing, while monitoring the predicted trends in �, �, and �.

Another model we considered in search for the APLB
was the interrupted-strand model (ISM) [42,43]. Therein a
metallic wire is divided into segments by randomly posi-
tioned impurities of tunneling transparency e�s � 1,
which turn it into a chain of weakly coupled quantum
dots. In the simulations we studied wires with Ni ¼ 50
impurities of strength s ¼ 4. While we did observe the
APLB in such wires (� ¼ 3:75, � ¼ 1:6, � ¼ 0:15), the
quality of the data collapse was not as good as in Fig. 1.
Otherwise, the results were similar [44].

Note that the VRH in the ISM is analogous to multidot
cotunneling in a granular metal. The latter also leads, in all
spatial dimensions, to the power-law conductance behavior
with � ¼ � ¼ 2Nd � 4, Nd being the number of dots
involved in one cotunneling event [45]. Hence, the APLB
is not uncommon in the VRH regime.

The authors are grateful to K. Matveev and M. Bockrath
for discussion of the results and to M. Di Ventra for
providing access to computer resources on which a part
of the calculations was carried out. This work is supported
by the Grant NSF DMR-0706654.
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