
Spectral Properties near the Mott Transition in the One-Dimensional Hubbard Model

Masanori Kohno

WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
(Received 28 June 2010; published 30 August 2010)

The single-particle spectral properties near the Mott transition in the one-dimensional Hubbard model

are investigated by using the dynamical density-matrix renormalization group method and the Bethe

ansatz. The pseudogap, hole-pocket behavior, spectral-weight transfer, and upper Hubbard band are

explained in terms of spinons, holons, antiholons, and doublons. The Mott transition is characterized by

the emergence of a gapless mode whose dispersion relation extends up to the order of hopping t (spin

exchange J) in the weak (strong) interaction regime caused by infinitesimal doping.
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High-Tc cuprate superconductors are obtained by dop-
ing Mott insulators that have gapless spin and gapped
charge excitations. In the small-doping regime, anomalous
spectral features, such as pseudogaps, Fermi arcs, hole
pockets, and kinks in dispersion relations, have been ob-
served [1,2]. It is widely believed that understanding such
anomalous electronic properties near the Mott transition
will be critical for achieving high-Tc superconductivity.

The Mott transition can be viewed as charge localization
caused by strong Coulomb repulsions; note that the nature
of this transition contrasts with that of conventional metal-
to-band-insulator transitions where a band of single-
particle states is fully occupied regardless of the interac-
tions. Further, because of the strong correlations, it is
generally difficult to obtain reliable information and intui-
tive understanding on the Mott transition. However, al-
though some detailed properties might depend on the lat-
tice structure, it can be expected that essential features of
Mott transitions are generally true for finite dimensions and
that the generic features can be deduced by using a one-
dimensional (1D) Hubbard model. In this model, we can
interpret excitations relevant to the Mott transition using
exact solutions without bias. Also, we can investigate the
properties of a single metallic phase all the way to the Mott
transition point without causing any instability to phase
separation, superconducting, or magnetic orders, which
might otherwise have occurred in higher dimensions.

In this Letter, we investigate the spectral properties near
the Mott transition in a 1D Hubbard chain by using un-
biased numerical techniques and exact solutions, focusing
attention on the pseudogap, hole-pocket behavior, upper
Hubbard band (UHB), and spectral-weight transfer from
the UHB to the lower Hubbard band (LHB). We also
discuss the nature of the Mott transition through compari-
sons with the Fermi liquid picture and recent numerical
results on the two-dimensional (2D) Hubbard model [3].

Model and method.—We consider the 1D repulsive
Hubbard model defined by the following Hamiltonian:

H ¼ �t
X
i;�

ðcyiþ1�ci� þ H:c:Þ þU
X
i

ni"ni# ��
X
i

ni;

where ci� and ni� are the annihilation and number opera-
tors of an electron at site i with spin �, respectively, and
ni ¼ ni" þ ni#. The hopping integral t and on-site repulsion
U are positive. The number of sites, electrons, and down
spins is denoted by L, N, and M, respectively. The doping
concentration is defined as � ¼ 1� N=L. Also, we define
the single-particle spectral function as follows:

Aðk;! > 0Þ ¼ X
l

jhljcyk"jGSij2�ð!� El þ EGSÞ;

Aðk;! < 0Þ ¼ X
l

jhljck#jGSij2�ð!þ El � EGSÞ:

Here, jGSi and jli denote the ground state with energy EGS

and the excited state with El, respectively, while cyk� cre-

ates an electron with momentum k and spin �.
I calculated Aðk;!Þ by using the dynamical density-

matrix renormalization group method [4] under the open
boundary condition with the number of density-matrix
eigenstatesm ¼ 120. The data with Lorentzian broadening
with half width at half maximum � ¼ 0:16t were decon-
volved to those of Gaussian broadening with standard
deviation � ¼ 0:1t. The spectral functions at k ¼
�j=ðLþ 1Þ for j ¼ 1� L were extrapolated to k ¼ 0
and �. Figure 1(a) shows the typical behavior of Aðk;!Þ.
Since the difference between the results for L ¼ 60 and 80
is small in this scale, this Letter shows the results for L ¼
60 unless otherwise mentioned. Noting that Aðk;!Þ ¼
Að�k;!Þ ¼ Aðkþ 2�;!Þ, we consider the properties of
0 � k � � without loss of generality.
To identify the dominant modes in Aðk;!Þ, we use the

Bethe ansatz, where the wave functions, energies, and
momenta of eigenstates are expressed in terms of fkjg
and f��g that satisfy the following Bethe equations [5]:

Lkj ¼ 2�Ij þ 2
P

M
�¼1 tan

�1 4tð���sinkjÞ
U for j ¼ 1� N, andP

N
j¼1 tan

�1 4tð���sinkjÞ
U ¼ �J� þP

M
�¼1 tan

�1 2tð�����Þ
U for

� ¼ 1�M. Here Ij and J� are integers or half-odd inte-

gers. We impose the (anti)periodic boundary condition,
when M in the ground state is odd (even). Because eigen-
states are obtained through the Bethe equations once fIjg
and fJ�g are given, the fIjg and fJ�g distributions character-
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ize eigenstates. In the ground state, fIjg and fJ�g are con-

secutively distributed around zero. Excited states are ob-
tained by creating holes (particles) inside (outside) the
consecutive distributions. The holes in the fJ�g distribu-
tions are called spinons, while those in the fIjg distributions
are called holons. The particles created outside the con-
secutive fIjg distribution are called antiholons. Hereafter,

we use the following shorthand notations for the spinon,

holon, and antiholon: s, h, and h�, respectively. Noting that
the momentum of the eigenstate is given by K ¼
2�ðPjIj þ

P
�J�Þ=L, we define the momenta of s, h,

and h� as qs ¼ 2�Js=L, qh ¼ 2�Ih=L, and qh� ¼
2�Ih�=L, respectively, where Js, Ih, and Ih� are the posi-
tions of s, h, and h� in the distributions of fJ�g and fIjg. The
momentum ranges are jqsj< kF, jqhj< 2kF, and 2kF <
jqh� j<� with the Fermi momentum kF ¼ �ð1� �Þ=2.
Dominant modes for !< 0.—Before discussing the

Mott transition, we review the dominant modes for !<
0 at � ¼ 0:4 [6,7]. The dominant mode for k < kF ¼ 0:3�
near ! & 0 in Fig. 2(a-1) is identified as the s mode
without h and h� [blue dashed-dotted line for k < kF in
Fig. 2(c-1)]. The mode slightly below it is identified as the
h mode with s having qs ¼ kF and h� having qh� ¼ 2kF.
Hereafter, we denote it as the h mode with sðkFÞ and
h�ð2kFÞ. The mode for k < 3kF ¼ 0:9� is identified as
the h mode with sð�kFÞ and h�ð�2kFÞ, which is called
the shadow band [8]. The lower edge of the shh� con-
tinuum is indicated by the lowest pink dotted line in
Fig. 2(c-1). For ! * 0, sh� excitations are dominant [7,9].
Pseudogap.—As shown by the red line in Fig. 1(b-1),

the momentum-integrated spectral weight ½Að!Þ ¼R
�
��

dk
2�Aðk;!Þ� shows reductions near ! ’ 0. This pseu-

dogap behavior originates from the following three prop-
erties: (i) low-energy property as a Tomonaga-Luttinger
liquid [10,11], (ii) the band-edge singularity of the 1D
dominant modes, and (iii) continua spread above and be-
low ! ¼ 0. In a Tomonaga-Luttinger liquid, Að!Þ / j!j�
for ! ! 0 with the same exponent as that of the momen-
tum distribution function nðkÞ � 1=2 / jk� kFj� for k !
kF, where 0< �< 1=8 depending on the values ofU=t and
� [Fig. 1(d)] [10]. Because � ! 1=8 as � ! 0, the pseu-
dogap behavior will be significant near the Mott transition.
Also, the contribution of dominant modes extracted by
Gaussian fitting of the peaks in Aðk; !Þ at each k [blue
dashed-dotted line in Fig. 1(b-1)] shows peaks near the
bottom of the smode for! & 0 and the top of the h� mode
with sðkFÞ [brown solid line near k ’ �=2 in Fig. 2(c-2)]
for ! * 0; this implies that the pseudogap behavior can
be explained as a dip between the peaks near the band
edges of the 1D dominant modes. Moreover, the contribu-
tion from continua except the dominant modes [green
region in Fig. 1(b-1)] shows reductions near ! ’ 0. As in
Fig. 2(b-2), the continua above and below ! ¼ 0 shrink to
the gapless points at k ¼ kF and 2�� 3kF as ! ! 0. The
continua for ! * 0 are mainly due to the 2-�-string solu-

tions where two ��’s are
��� {U=ð4tÞ with real �� [12] for

k & kF, sh
� for k ’ 2�� 3kF, and hh� excitations with

sðkFÞ and h�ð�2kFÞ for k ’ 2�� 3kF and kF. For ! & 0,
the continua mainly come from the sh excitations with
h�ð�2kFÞ.
Hole-pocket behavior.—The mode connecting the two

gapless points at k ¼ kF and 2�� 3kF for ! * 0 is iden-
tified as the h� mode with sðkFÞ. On the basis that it has
charge character and that the momentum region between

FIG. 1 (color). (a) Aðk;!Þ for L ¼ 60 (red solid line) and 80
(blue dotted line) at k ’ 0:8� for U=t ¼ 8 when � ¼ 0:1.
(b) Að!Þ in the LHB (red lines) for (b-1) U=t ¼ 8, � ’ 0:133;
(b-2) U=t ¼ 8, � ’ 0:033; and (b-3) U=t ¼ 4, � ’ 0:033. In
(b-1), the blue dashed-dotted line denotes the contribution of
dominant modes, while the green region shows the contribution
of continua except the dominant modes. In (b-2,3), the light blue
regions denote the contribution from !> 0. Arrows indicate
	ðk ¼ �Þ of Eq. (1). (c) Dispersion relations of the upper edge of
the sh� continuum (red dotted line) and the h� mode with sðkFÞ
(brown solid line) for U=t ¼ 8 at � ’ 0:133. The green dotted
line and the dot at k ¼ 0:5� show those of � ! 0.
(d) AðkÞ ¼ R

d!Aðk;!Þ for U=t ¼ 8 at � ’ 0:133. Blue squares
with the light blue region denote the contribution from !< 0,
which is the momentum distribution function in the ground state
nðkÞ. Green diamonds denote the contribution from !> 0; red
crosses and pink open circles denote that of the LHB for !> 0
and that of the UHB. The vertical yellow line indicates k ¼ kF.
Brown solid circles denote the total weight at each k, which
satisfies the sum rule within numerical accuracy. (e) Doping
dependence of spectral weight A. Solid lines show A of the LHB
for !> 0 at U=t ¼ 4 (red circles) and 8 (blue squares). Red and
blue triangles denote A for !< 0 at U=t ¼ 4 and 8. The green
dashed line and orange dashed-dotted line indicate A ¼ � and
(1� �Þ=2, respectively. Open symbols denote data for L ¼ 80.
(f) Aðk;!Þ for U=t ¼ 4 at � ’ 0:033.
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these gapless points shrinks as �k ¼ 2��, this region can
be regarded as a hole pocket. It is expected that the h�
mode will become robust as U=t increases because of the
reduction in double occupancies. In fact, the h� mode has
been found for U=t ! 1 [8] and in the 1D t-J model [13].

Spectral-weight transfer.—Although the spectral weight
A transferred to the LHB for !> 0 equals the amount of
doping (A ¼ �) at t ¼ 0 [14], Fig. 1(e) shows that A > �
for t � 0. Such behaviors have been discussed in the
literature [3,14,15]. [For !< 0, A ¼ ð1� �Þ=2 as usual.]

The question here is which mode carries the transferred
spectral weight. As in Figs. 2(b-3) and 2(c-3), a consider-
able weight is carried by the mode of the upper edge of the
sh� continuum. In the � ! 0 limit, where jqh� j ! �, this
mode reduces to the s mode with h�ð��Þ; the dispersion
relation 	ðkÞ is obtained as follows:

	 ¼ 2t2

U

Z �

��
dqcos2qsech

2�tð�s � sinqÞ
U

;

k ¼ �

2
þ t

U

Z 1

�s

dx
Z �

��
dqsech

2�tðx� sinqÞ
U

;

(1)

by using dressed energies and momenta for � ! 0 [16,17].
This gapless mode naturally leads to the 2-spinon contin-
uum at half-filling expressed as EðkÞ ¼ 	ðk1Þ þ 	ðk2Þ with
k ¼ k1 þ k2 � � [16,17]: The two gapless modes carrying
S ¼ 1=2 with gapless points at k ¼ �kF cause the gapless
S ¼ 1 spin excitations with the gapless point at jkj ¼ 2kF.
It should be noted that the cosine dispersion relation in the
U=t ! 0 limit as well as the flat dispersion relation in the
U=t ! 1 limit [18] are reproduced, since 	ðkÞ ’ �2t cosk
for U � t and 	ðkÞ ’ � �J

2 cosk with J � 4t2=U for U 	
t [16] for jk� �j<�=2. This implies that the spectral
weights transferred by infinitesimal doping spread up to the
energy of OðtÞ for small U=t and OðJÞ for large U=t, as in
Figs. 1(b-2), 1(b-3), 1(c), 1(f), and 2(b-3). This behavior
contrasts with band-insulator-to-metal transitions, where
the transferred spectral weight remains within the chemical

potential shift �� of Oð�2=DÞ for � ! 0 in D dimensions.
Upper Hubbard band.—To identify the dominant modes

in the UHB, we consider the solutions with a k�� string,
i.e., a pair of complex kj’s with a nonzero imaginary part,

which represents a pair of electrons [12]. Since such solu-
tions have energies of OðUÞ in the large U=t regime
[12,16], it is natural to expect that they are relevant for
the UHB [9,19]. In fact, it has been found that solutions
with a string length greater than 1 have considerable spec-
tral weights in the high-energy regime for quasi-1D spin
models [20,21] and spinless-fermion chains [22,23]. The
k�� string is characterized by a half-odd integer or an
integer �I1. We call the quasiparticle (QP) for the k��
string a doublon and denote it as d; the momentum is
defined as qd ¼ 2� �I1=L in jqdj<�� 2kF ¼ �� [12].
We define the sign of qd such that k¼�qs�qhþqh� þqd.
At half-filling, Aðk;!Þ of the UHB is symmetric with

that of the LHB because of the particle-hole symmetry. In
the small-� regime, Aðk;!Þ remains almost symmetric, as
in Figs. 1(f) and 2(a-3). In the � ! 0 limit, where jqdj !
0, the dominant modes in the UHB are characterized by s
and h in the k��-string solutions and have essentially the
same character as that in the LHB. Namely, the low-energy
mode for k * kF ’ �=2 in Fig. 2(d-3) is identified as the s
mode with hð�2kFÞ and dðqd ’ 0Þ, as in Fig. 2(e-3). The
mode slightly above it and the low-energy mode for k & kF
are both identified as the hmode with sðkFÞ and dðqd ’ 0Þ.
The high-energy mode is identified as the h mode with
sð�kFÞ and dðqd ’ 0Þ, which corresponds to the shadow

FIG. 2 (color). (a),(b),(d) Aðk;!Þ for U=t ¼ 8 at � ’
0:4; 0:133; 0:033 (from the left) for (a) overall views, (b) the
LHB, and (d) the UHB. (c),(e) Dispersion relations obtained by
using the Bethe ansatz in L ¼ 240, corresponding to (b),(d).
Solid lines except those at ! ¼ 0 show holon modes and anti-
holon modes. Blue dashed-dotted lines denote spinon modes.
Red (pink) dotted lines show upper (lower) edges of continua of
hh� with sðkFÞ and h�ð2kFÞ, sh�, hh� with sðkFÞ, and shh� (from
above) in (c), and shd in (e). Purple dashed double-dotted lines
in (c) denote spinon modes in 2-�-string solutions. Open circles
indicate peaks of dominant modes of (b),(d). The inset in (c-3) is
the close-up near the gapless points. The pink [yellow] region in
(e) denotes the hd continuum with sð�kFÞ [sðkFÞ]. Spinon
[holon] modes in (e) have hð�2kFÞ and dð� ð�� 2kFÞÞ with
qdqh < 0 [sð�kFÞ and dðjqdj ’ ��=2; qdqh < 0Þ].
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band. For larger doping, the dominant modes with charge
character in Figs. 2(d-1) and 2(d-2) remain within the hd
continua with sð�kFÞ [yellow and pink regions in
Figs. 2(e-1) and 2(e-2)] and appear to have dðjqdj ’
��=2; qdqh < 0Þ [solid lines in Figs. 2(e-1) and 2(e-2)].

Discussion.—To obtain an intuitive understanding of
Mott transitions, two scenarios have been considered.
One is that the effective carrier density (n�) vanishes, as
in the case of metal-to-band-insulator transitions. The
other is the effective-mass (m�) divergence in the Fermi
liquid theory. The present results show that spectral
weights are mainly transferred to the h� mode with sðkFÞ
and the mode of the upper edge of the sh� continuum
[Figs. 1(b-1), 1(b-2), 1(b-3), and 1(c)]. The former behaves
like n� ! 0, because the hole pocket shrinks as � ! 0. The
latter may seem to behave as m� ! 1, because its spectral
weight decreases [Fig. 1(e)]. However, in a Fermi liquid,
the renormalized bandwidth near the chemical potential
shrinks as 	ðkÞ / 1=m� for m� ! 1, which is not the case
for the present results wherein 	ðkÞ in Eq. (1) remains OðtÞ
or OðJÞ [Fig. 1(c)]. Thus, a simple classification of n� ! 0
or m� ! 1 is not accurate for the Mott transition of the
Hubbard chain; the Mott transition is rather characterized
as a loss of charge character from the mode having both
spin and charge characters, while the dispersion relation of
the spin part remains gapless and dispersing.

The nature of the Mott transition in the Hubbard chain
may be more clearly understood through comparisons with
the results of a recent cellular dynamical mean-field study
on the Mott transition of the 2D Hubbard model in Ref. [3],
where the following features have been suggested. (i) The
phase transition from a large Fermi surface to hole pockets
occurs at nonzero �. (ii) The transferred spectral weight
behaves as A ¼ �þ hni"ni#i after tiny doping. (iii) A gap

fully opens between the band forming the hole pockets and
that of in-gap states for !> 0 below the UHB, leading to
the zero surface of the Green function [24]. (iv) The pseu-
dogap can be attributed to doublon (doubly occupied site)-
holon (empty site) binding [15] relaxed due to doping.

In contrast, for the Hubbard chain, (i) there is no phase
transition when � � 0: The gapless point at k ¼ 2�� 3kF
persists even in the large doping regime, where the gapless
point goes beyond the zone boundary (k ¼ �) and is
located at k ¼ 3kF, as in Fig. 2(b-1). (ii) The transferred
spectral weight does not follow A ¼ �þ hni"ni#i and

gradually reaches zero as � ! 0, as in Fig. 1(e). (iii) The
cosinelike mode and the antiholon mode are both gapless at
k ¼ kF: There is no gap between them at k ¼ kF. The
gapless cosinelike mode is related to the gapless spin
excitations. (iv) Double occupancy in the LHB does not
behave as a QP. The QP for a pair of electrons is defined in
the k��-string solutions, which are relevant only for the
UHB: The pseudogap behavior in the LHB is not related to
the QP. Understanding and explaining the above differ-
ences can be an interesting topic for future study.

Summary.—The single-particle spectral properties near
the Mott transition were investigated by using the Bethe
ansatz and dynamical density-matrix renormalization
group method in the 1D Hubbard model. Characteristic
spectral features near the Mott transition, such as the
pseudogap, hole-pocket behavior, spectral-weight transfer,
and upper Hubbard band, were explained in a unified
manner in terms of spinons, holons, antiholons, and dou-
blons. A remarkable feature is the emergence of the gapless
mode extending up to OðtÞ ½OðJÞ� for small [large] U=t by
infinitesimal doping. This mode is related to the spin
excitations at half-filling and cannot be interpreted by
either the rigid-band picture or the Fermi liquid theory.
The present results have similarities to the anomalous
spectral features observed in high-Tc cuprates [1,2] and
some aspects of the 2D Hubbard model [3,15,24]. I expect
that generic features of Mott transitions in finite dimen-
sions can be deduced from the present results.
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