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We provide a minimal continuum model for mesoscale plasticity, explaining the cellular dislocation

structures observed in deformed crystals. Our dislocation density tensor evolves from random, smooth

initial conditions to form self-similar structures strikingly similar to those seen experimentally—

reproducing both the fractal morphologies and some features of the scaling of cell sizes and misorienta-

tions analyzed experimentally. Our model provides a framework for understanding emergent dislocation

structures on the mesoscale, a bridge across a computationally demanding mesoscale gap in the multiscale

modeling program, and a new example of self-similar structure formation in nonequilibrium systems.
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Structural engineering materials have a bewildering va-
riety of microstructures, which are often controlled by
deformation and annealing during the formation process.
An imposed distortion generates a complex morphology
even for a single crystal of a pure material—polycrystalline
grains form at high temperature where dislocation climb
allows for polygonization, cell structures form at low tem-
peratures when climb is forbidden. Cell walls [Figs. 1(c)
and 1(d)] are distinct from grain boundaries in that they
have smaller misorientations, different origins, are mor-
phologically fuzzier, and the cells refine (get smaller)
under shear. Experiments differ in characterizing the cell
structures; some show convincing evidence of fractality
[1–3] with structure on all length scales [Fig. 1(c)], while
others show structures with a single characteristic scale
setting their cell size and cell wall misorientation distribu-
tions [4–6] [Fig. 1(d)].

Dislocation avalanches [7], size-dependent hardness
(smaller is stronger) [8], and cellular structures [1,5] all
emerge from collective dislocation interactions on the
micron scale. We expect that these mesoscale phenomena
should be captured by an appropriate continuum theory of
dislocation dynamics. Computationally, such a theory is
crucial for multiscale modeling, as atomistic and discrete
dislocation simulations are challenging on these scales of
length and strain. Here we present a minimal model for
cellular structures, which eventually can be extended to
include the pinning and entanglement needed for ava-
lanches and hardness, and the slip systems and statistically
stored dislocations needed for realistic descriptions of
texture evolution and cross slip [9]. Our model gives the
elegant, continuum explanation for the formation and evo-
lution of cellular dislocation structures. It exhibits both the
experimentally observed fractal structures and scaling col-
lapses hitherto thought incompatible. Finally, it provides
the fundamental distinction between cell walls and grain
boundaries; cell walls are intrinsically branched in a fractal
fashion.

Within a continuum theory of dislocation dynamics
[10,11], incorporating only elastic self-interactions with a
minimally modified gradient dynamics, we study the re-
laxation of a smoothly deformed crystal and its subsequent
evolution under external strain [Figs. 1(a) and 1(b)]. When
climb is allowed, we find the distortion neatly evolves into
a stress-free collection of grain boundaries. When climb is
forbidden, cell wall structures evolve with power-law cor-
relations and self-similarity—providing a clear morpho-

FIG. 1 (color online). Theoretical and experimental disloca-
tion fractal morphologies. Top: Simulated fractal cell wall pat-
tern after uniaxial strain of �zz ¼ 4�0. (a) Dislocation density
plot; (b) local orientation map. Bottom: TEM micrographs taken
from (c) a Cu single crystal [1] after [100] tensile deformation to
a stress of 75.6 MPa and (d) an Al single crystal following
compression to � ¼ 0:6 [5], respectively. Gray scales have been
adjusted to facilitate visual comparisons. Note the striking
morphological similarity between theory and experiment.
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logical distinction between cell walls and grain boundaries,
a tangible model for the experimentally observed fractal
structures [1–3], and an alternative to those that predict
microstructure without a wide range of scales [12]. The
resulting morphology, however, is self-similar only after
rescaling both space and amplitude. Performing the exper-
imentalist’s analysis of the misorientation and cell-size
distributions [4–6] yields good agreement with the ob-
served scaling form (albeit with significantly different
scaling functions and exponents). By directly exhibiting
key features of the emergent experimental behavior in a
continuum, deterministic dislocation density theory, our
simulations pose a challenge to theories based on stochas-
ticity in the continuum laws [3,13] or in the splittings and
rotations of the macroscopic cells [14,15]. Can these sto-
chastic theories describe our chaotic dynamics after coarse
graining?

Our order parameter is the plastic distortion tensor �P.
Together with the resulting elastic distortion �E derivable
from �P via the long-range fields of the dislocations [11],
�P both gives the deformation u of the material (through
@iuj ¼ �E

ij þ �P
ij) and gives a three-index variant of the

Nye dislocation density tensor [16] �ijkðxÞ ¼ @j�
P
ik �

@i�
P
jk (defining the flux of dislocations with Burgers vector

along the coordinate axis êk through the infinitesimal
surface element along êi and êj). �

P thus fully specifies

the dislocation wall morphologies, the crystal rotation (the
Rodrigues vector � giving the axis and angle of rotation),
and the stress field � [the external load plus the long-range

stresses from the dislocations, given by a kernel [11,17]
�ijðrÞ ¼ �ext

ij þ R
Kijklðr� r0Þ�klðr0Þdr0].

Following Roy and Acharya [10], we assume the flow of
�ijkðxÞ is characterized by a single velocity vðxÞ. Allowing
both climb and glide, we can take the velocity v to be
proportional to the Peach-Kohler force F on the entire
population of dislocations times a mobility Dðj�jÞ va ¼
Dðj�jÞF a ¼ Dðj�jÞ�ast�st, where � is the stress; we then
define @�P

ij=@t ¼ Jij ¼ va�aij. (This provides the same

equation of motion derived later by Limkumnerd and
Sethna [11].) To remove dislocation climb (mass transport
via frozen-out vacancy diffusion), we must set the trace of
the volume change Jii ¼ 0, suggesting a dynamics which
moves only the traceless portion of the dislocation density:

@�P
ij

@t
¼ Jij ¼ va�aij � 1

3
�ijva�akk: (1)

In this case, to guarantee that energy monotonically de-
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FIG. 2 (color online). Scaling of the correlation function
(10242 simulations). The trace of the orientation-orientation
correlation function C�

ijðRÞ ¼ hð�iðxÞ ��iðxþ rÞÞð�jðxÞ �
�jðxþ rÞÞi is averaged over all pairs of points at distance jrj ¼
R. Notice that the simulation allowing climb has C�

ii ðRÞ � R as

expected for nonfractal grain boundaries. Notice that the glide-
only simulations show C�

ii ðRÞ � R2�� with � � 0:5, indicating a
fractal, self-similar cell structure, albeit cut off by lattice and
system size effects.

TABLE I. Critical exponents measured for different correla-
tion functions. GO: glide only; CG: climb and glide; ST:scaling
theory [18].

Correlation functions GO CG ST

C�
ii ðrÞ ¼ hPi½�iðrÞ ��ið0Þ�2i 1:5� 0:1 1:1� 0:1 2� �

C�ðrÞ ¼ h½�ijð0Þ�ijðrÞ�i 0:4� 0:1 0:9� 0:3 �

FIG. 3 (color online). Self-similarity in real space. Each frame
represents the lower left-hand quarter of the previous frame.
Frame (a) is a 1024� 1024 simulation; (b), (c), and (d) are thus
of length L ¼ 512, 256, and 128. All are rescaled in amplitude
by ðL=L0Þ��=2 with � ¼ 0:5 (see Fig. 2 and Table I). The scale is
logarithmic with a range of almost 107. Notice the statistical self-
similarity. Other regions, when expanded, can show larger
differences between scales, reflecting the macroscopic inhomo-
geneity of the dislocation density.
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creases we are led to choose the velocity based on the
Peach-Kohler force on this traceless part va ¼ Dðj�jÞ�
ð�ast � �st�abb=3Þ�st, making the rate of change of the

energy density the negative of a perfect square [18].
(This differs from our earlier glide-only formulation
[11].) To ensure that the velocity is proportional to the

force per dislocation, we choose Dðj�jÞ ¼ 1=j�j ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ijk�ijk=2

q
. Our theory does not incorporate effects of

disorder, dislocation pinning, entanglement, glide planes,
crystalline anisotropy, or geometrically unnecessary dislo-
cations. It is designed to provide the simplest framework
for understanding dislocation morphologies on this
mesoscale.

Our simulations show a close analogy to those of turbu-
lent flows. As in three-dimensional turbulence, defect
structures mediate intermittent transfer of morphology to
short length scales. (Unlike two-dimensional turbulence,
we find no evidence of an inverse cascade—our simula-
tions develop structure only at scales less than or equal to
the initial correlation length of the deformation field.) As
conjectured [19] for the infinite-Reynolds number Euler
equations, our simulations develop singularities in finite
time [11]. It is unclear whether our physically motivated

equations have weak solutions; our simulations exhibit
statistical convergence, but the solutions continue to de-
pend on the lattice cutoff (or on the magnitude of the
artificial diffusion added to remove lattice effects) in the
continuum limit [18]. Since our simulations exhibit struc-
ture down to the smallest scales, we conjecture that this is a
kind of sensitive dependence on initial conditions—but
here amplified not by passage of time, but by passage
through length scales. Since the physical system is cut
off by the atomic scale, we may proceed even though our
equations are in some sense unrenormalizable in the
ultraviolet.
We simulate systems of spatial extent L in two dimen-

sions with periodic boundary conditions; our deformations,
rotations, strains, and dislocations are fully three-
dimensional. The initial plastic distortion field �P is a
Gaussian random field with decay length L=5 and initial
amplitude �0 ¼ 1. We apply a second order central up-
wind scheme designed for Hamilton-Jacobi equations [20]
on a finite difference grid. The unstrained simulations
presented are at late time, where the elastic energy density
is small and smoothly decreasing to zero (see supplemen-
tary movies 1 and 2 [21]). The strained simulations in
Fig. 4 (see supplementary movie 3 [21]), have uniaxial
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FIG. 4 (color online). Cellular structures under strain: size and misorientation distributions. (a) An unstrained state formed by
relaxing a random deformation, decomposed into cells determined by our boundary-pruning method: we systematically remove
boundaries in order of their average misorientation angle, and then prune cells based on their perimeter-to-area ratios and
misorientation angles (see supplementary movie 4 [21]). Boundaries below a threshold root-mean-square misorientation �c ¼
0:015�0 are removed. (b) The final state after a strain of �zz ¼ 4�0 is applied; notice the cell refinement to shorter length scales.
(c) The cell-size distribution (square root of area), scaled by the mean cell size and weighted by the area, at various external strains.
(d) The misorientation angle distribution, weighted by cell boundary length, scaled by the mean. For each curve, data start at �c. This
distribution appears to be closer to a power-law (inset) than the experimental distributions (solid curves [4–6]). (e),(f) Mean cell size
Dav and misorientation angle �av as functions of external strain. We find these same power lawsDav � ��0:26�0:14 and �av � �0:26�0:04,
with errors reflecting over a range of �c and for a variety of pruning algorithms and weighting functions. Notice that the productDav�av
is approximately constant, as observed experimentally [4]. The power-law dependence �0:3 is weaker than the powers �1=2 and �2=3

observed experimentally for incidental dislocation boundaries and geometrically necessary boundaries, respectively.
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strain in the out-of-plane direction, which is increased by
adjusting the external stress �zzðtÞ to hold �ðtÞ fixed. The
strain rate is _� ¼ 0:05�2

0.

Figure 2 shows the orientation-orientation correlation
function. Here we see that the cellular (climb-free) struc-
tures have nontrivial power-law scaling, but we see non-
fractal behavior in the grain boundary morphology
allowing climb. In supplementary movie 2 [21], the com-
plex structure of cell walls (climb-free) shows a few pri-
mary large-angle boundaries with high dislocation density
and many low-angle subboundaries, leading to fuzzy cell
walls that are qualitatively different from the grain bounda-
ries (climb and glide, seen in supplementary movie 1 [21]).
Table I includes also the correlation function of the total
dislocation density; one can show [18], if the elastic strain
is zero [22], that C�ðrÞ ¼ �@2C�

ii ðrÞ � @i@kC
�
ikðrÞ, so

C�
ijðrÞ � jrj� tells us that C�ðrÞ � jrj��2, implying the

exponent relation � ¼ 2� � in the last column of
Table I. The scaling for the correlation function for the
total plastic distortion �P is not as convincing [18]. Both
are consistent with a renormalization-group transformation

that rescales the dislocation density by a factor of b��=2

when it rescales the length scale by a factor of b. Figure 3
gives a real-space renormalization-group illustration of this
self-similarity; the cell walls form a self-similar, hierarch-
ical structure.

Can we reproduce the experimental fractal characteriza-
tion of cell boundaries? Box counting applied to the dis-
location density [as in Fig. 1(a)] gives dimensions that
depend strongly on the amplitude cutoff (the dislocation
density is self-similar, not a simple fractal). If we first
decompose our simulation into cells as in Fig. 4(b), and
apply box counting to the resulting cell boundaries, we ob-
tain a fractal dimension of around 1.5 over about a decade
[18], compared to the experimental values of 1.64–1.79
[3]. Such a measurement, however, ignores the important
variation of wall misorientations with scale (capturing the
spatial scaling but missing the amplitude scaling).

Can we reconcile our self-similar cell morphologies
with the experimental analyses of Hughes and collabora-
tors [4–6]? Using our boundary-pruning algorithm to iden-
tify cell walls, Figs. 4(c) and 4(d) show the cell size and
misorientation distributions extracted from an ensemble of
initial conditions. The misorientation distribution we find
is clearly more scale free (power-law) than that seen ex-
perimentally. Under external strain, we do observe the
experimental cell structure refinement [Fig. 4(b)], and we
find the experimental scaling collapse of the cell-size and
misorientation distributions [Figs. 4(c) and 4(d)] and the
observed power-law scaling of the mean size and angle
with external strain [Figs. 4(e) and 4(f)], albeit with differ-
ent scaling functions and power laws than those seen in
experiments [4–6].

Because we ignore slip systems, spatial anisotropy, and
immobile and geometrically unnecessary dislocations, we
cannot pretend to reflect real materials. But by distilling

these features out of the analysis, we have perhaps eluci-
dated the fundamental differences between cell walls and
grain boundaries, and provided a new example of nonequi-
librium scale invariance.
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