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The measurement of the drag coefficient of a dilute granular flow around a cylinder is carried out over a

wide range of Knudsen numbers. The variation of this coefficient shows a smooth transition from a freely

falling grains regime to a continuous flow regime. This is reminiscent of the behavior of gases in the

supersonic regime. This transition is accompanied by remarkable changes of the density and velocity

profiles near the cylinder. A simple model is proposed for the transition regime which is in agreement with

the experimental measurements.
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Granular flow around obstacles has received much at-
tention in recent years. This flow evolves with the density
of incoming particles from a situation where the grains fall
individually on the obstacle to a situation where dense
patterns form as displayed in Fig. 1. These changes are
related to shock formation [1,2] since the ‘‘sound velocity’’
of flowing and dilute assemblies of grains can be much
smaller than the flow velocity [3,4] allowing detailed labo-
ratory studies of supersonic flows around obstacles. A
pressing question is the force exerted by the flow on the
obstacle. This is important for different fields such as
geophysics, the processing of diverse granular materials,
and the control of avalanches through placing protection
barriers for example [5]. This question has received much
attention, in the dense flow regime, both experimentally
and numerically [6–8] but has received little attention from
experimentalists in the dilute regime [8,9].

The case of a dilute granular flow around a cylinder
studied here shows two different regimes for the variation
of the drag coefficient versus the so-called Knudsen num-
ber kD which compares the mean free path in the gas to the
dimensions of the object. The transition between these two
regimes occurs smoothly and mimics the variation ob-
served for molecular gases [10,11]. One of the main ob-
servations concerns notably this transition regime between
the dilute and more dense case. Our results show that it is
characterized by quantitative changes of the density and
velocity profiles around the cylinder and a simple model is
proposed to account for the transition regime. Our experi-
ments bring new insight and new information for the
granular kinetic theory, for which much progress has
been achieved in the past decade [12], by providing, in a
simple experiment, crucial elements for the transition from
very dilute to dense flows.

Here we focus on the drag force exerted on a thin
cylinder by a dilute vertical flow of grains confined be-
tween two glass plates so that the situation is quasi-two-
dimensional allowing accurate flow visualizations. The
velocity of the flow is near 200 cm=s giving a flow Mach

number near 8 [1,4]. The obstacle sits on top of a balance
so that the exerted force can be measured during the
experiment. We set the thickness of the obstacle (6 mm)
slightly smaller than the distance between the two plates
(h ¼ 6:5 mm). The spacing left is smaller than 1 grain
diameter so that the beads cannot get lodged in this spacing
leaving the obstacle free to move in the vertical direction.
A flow of grains then impacts the cylinder. During the flow,
the mass weighed by the balance is non zero with a stable
value when the flow reaches a steady state. It is this
constant value which we record for each flow rate. In this
manner, we record the variation of the exerted force (F ¼
mg where m is the measured mass and g the acceleration
due to gravity) versus the incident flow volume fraction�a

measured before the incident flux interacts with the ob-
stacle using either the known flux or a method developed in
[1]. This fraction was varied through the variation of the
incident mass flux by fixing a variable gate at the entrance
of the flow. This procedure therefore allows us to produce
the canonical curve: drag coefficient versus Knudsen num-
ber. The two quantities are defined in the following man-
ner: Cd ¼ F
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FIG. 1. Pictures of the flow of grains around a cylindrical
obstacle sandwiched between two transparent vertical plates
for three different flow volume fractions or Knudsen numbers
(steel spheres of d ¼ 1 mm and aluminum cylinder of D ¼
11 cm). Note that as kD decreases, the density in the close
proximity of the cylinder increases considerably going from
the dilute limit at kD ¼ 0:5 to the dense limit at kD ¼ 0:02.

PRL 105, 104501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 SEPTEMBER 2010

0031-9007=10=105(10)=104501(4) 104501-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.104501


Here, � is the density of the particles, Va is the velocity of
the flow measured using particle tracking, D is the diame-
ter of the cylinder, d is the diameter of the grains, and lð�aÞ
is the mean free path.

In the high kD limit (kD > 1), Cd is expected to asymp-
tote to a constant value given by Cd ¼ 4

3 ðeþ 1Þ [9], where
e is the inelasticity coefficient of the grains with the
obstacle (e ¼ 0:93 for steel spheres). This is borne out
experimentally as shown in Fig. 2(a), where the measured
force varies linearly with the volume fraction with the
expected slope as shown by the solid line. This regime
corresponds to the free particle flow. As �a increases, the
force deviates from the expected result indicating the onset
of a reduction in the value of Cd for kD < 2 as has been
observed in numerical simulations [9]. The initial decrease
of Cd with kD can be understood in a simple way: for high
kD, the grains fall individually on the obstacle and, after
colliding with the obstacle, rebound (specular reflection)
exchanging momentum with the obstacle. As the number
of incident grains increases (and therefore as kD de-
creases), the momentum transfer to the obstacle decreases
as part of the flow is diverted in the downward direction
(see Fig. 1) due to multiple grain-grain and grain-obstacle
collisions leading to a reduction of Cd.

For even higher volume fractions, the accumulation of
grains on top of the obstacle introduces an additional force
on the obstacle: the weight of the dense zone. To take this
into account, we have carried out visualizations of the flow
near the obstacle, estimated the area of the dense zone and
evaluated its weight. An implicit assumption in the evalu-
ation of the mass of the dense zone is that its average
volume fraction is constant and varies negligibly with the
incident volume fraction as has been verified previously
through measurements of the volume fraction profiles of
this zone [1]. A priori, the measured force should be the

sum of this weight and the drag exerted by the flow.
Figure 2(b) summarizes our data. Note that as expected,
the force increases slightly faster than the weight of the
dense zone at first but as the flux increases, the force
becomes smaller than the weight. This surprising behavior
is at first irreconcilable with the simple assumption that the
weight and the drag should just add up. In order to explain
this, we have to invoke a Jenssen like effect associated with
the presence of the vertical walls confining the flow. Let us
recall the simple case of a grain filled vertical silo. For this
case, the apparent mass of the grains, measured at the
bottom of the silo, is a linearly increasing function of the
height of the grains, i.e., their mass in the silo. The mea-
sured mass then saturates for higher heights giving an
apparent mass smaller than the mass enclosed in the silo.
This effect has been documented in different experiments
and the expression for the apparent mass of the silo de-
duced and explained through taking into account the fric-
tion of the grains on the walls of the silo [13]. The apparent
mass can be written as M ¼ Msatð1� expð�Msilo=MsatÞÞ,
where Msat is the mass at saturation and Msilo is the
enclosed mass. If we invoke a similar effect here, for kD <
0:1 for which the accumulated mass becomes non negli-
gible, we need to take into account the additional force
induced by the flow, the drag force sought after here. In this
case, the expression for the force was derived in [14] for
the case where an additional weight was placed on top of
the pile enclosed in the silo. This expression can be
adapted to our case by simply replacing the additional
weight by the drag force and obtain F ¼ ðCdQ�MsatgÞ�
expð�Mpatterng=MsatgÞ þ Msatg. Here CdQ, ðQ ¼
1
2��aV

2
aðDþ dÞhÞ, is the drag force exerted by the flow.

The two unknowns are the value of Cd and the value of
Msat. Figure 2(b) plots our data along with the values
deduced from the expression for the full force exerted by
the drag and the additional mass. The best fit givesMsatg ¼
1250 mN and 300 mN for steel and glass beads respec-
tively; the difference in value between glass and steel
spheres is due to the difference in the mass density of the
two materials. From this curve, we obtain the drag coeffi-
cient in the low kD limit. Figure 3 shows the variation of Cd

versus kD. Note that the trend of decreasing Cd as kD
decreases below 2 is confirmed down to very small values
where the drag seems to saturate at a value of about 1.
Measurements of the vertical velocity profile VyðzÞ (us-

ing particle tracking) and the volume fraction profile �ðzÞ
(using a method developed in [1], z is the distance from the
center of the cylinder) near the cylinder for different �a,
see Fig. 4, allow us to make an independent estimate of Cd

by estimating the flux of momentum across a chosen
section. The difference between the incoming momentum
flux and the outgoing momentum flux gives Cd ¼
2�h½�aV

2
aL� R

L
0 �ðzÞV2

y ðzÞdz�=Q, where L is a large

distance extending far away from the cylinder wall. This
estimate of Cd is shown in Fig. 3. The values of Cd turn out
to be in good agreement with those estimated from the
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FIG. 2. (a) Force versus�a for the high kD range for which the
mass of accumulated grains on top of the cylinder is negligible.
The solid line is the expected result for a constant Cd. (Steel
spheres of d ¼ 1 mm and a cylinder of D ¼ 2:7 cm) (b) Force
versus the weight of the dense zone on the obstacle for the low
kD range. (Steel spheres of d ¼ 1 mm for D ¼ 11 cm). Open
symbols are measurements, closed symbols are obtained using
the model in the text.
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force measurements validating our analysis of the effect of
the additional weight due to the accumulation of grains.
This agreement also suggests that the effect of shear
stresses is small. In addition to these considerations, we
have made an attempt at evaluating the drag by integrating
the pressure around the cylinder. This procedure requires
the use of an expression for the pressure of the granular gas
around the cylinder [1]. The values of Cd extracted from
such a calculation of the pressure (the local density and the
local temperature were determined all around the cylinder)
turn out to be in good agreement with those obtained from
the force measurements and the control volume method, as
shown in Fig. 3, indicating that the drag is dominated by
pressure drag.

The trend obtained here for Cd versus kD bears great
resemblance to that obtained for supersonic gas flows
around a cylinder for which the high kD plateau has been
attributed to diffuse reflection of the molecules on the
obstacle in the free molecular flow limit and the lower
plateau at low kD to the continuum flow limit [10]. The
transition from the first to the second regime is smooth just
like for gases. This is our main result since it shows that
granular gases and molecular gases behave similarly as far
as drag is concerned despite the obvious differences be-
tween the two systems. The transition region between the
two regimes remains an open problem is gas flows. Can
this region be better understood for granular flows?

First and since the two limiting values are well defined,
the transition region from the first regime to the second
regime can be obtained. The solid line in Fig. 3 is a fit to a
simple model which assumes that the probability for a
particle to travel a distance x without suffering a collision
is simply expð� x

lð�aÞÞ. This simple model assumes that

particles exit the interaction zone (between the flow and
the cylinder) if they do not undergo a collision over a
distance of roughly one cylinder radius. These particles
contribute, on average, a factor Cd corresponding to the

high kD limit. The rest of the particles are trapped near the
obstacle and contribute to the continuous flow with a Cd

corresponding to the low kD limit. The expression for Cd

using these considerations becomes CdðkDÞ ¼ CdðkD !
1Þ expð� 1

2kD
Þ þ CdðkD ! 0Þð1 � expð� 1

2kD
ÞÞ. Here the

characteristic distance x used is the radius of the cylinder.
Actually the best fit gives a value of D=2:5. The solid line
in Fig. 3 shows that these considerations capture the essen-
tial features of the variation of Cd versus kD.
Second, the structure of the flow around the cylinder

actually changes as the transition region is approached as
shown in Fig. 4. We noted two remarkable features. For
kD > 0:5, the velocity profile is relatively flat while the
volume fraction is small with a wide profile. For kD < 0:1,
the flow is well established with a clear velocity profile and
volume fraction profile (which reaches high values near
0.55 near the cylinder for low kD). The velocity profile
shows a well defined shear rate linking a velocity at the
cylinder wall (which is roughly the free fall velocity of a
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FIG. 3. Cd versus kD (solid circles: steel spheres d ¼ 1 mm,
D ¼ 11 cm and 2.7 cm, squares: glass beads d ¼ 1:2 mm and
D ¼ 11 cm, triangles: estimates from momentum flux differ-
ence, crosses: estimates from integrating the pressure around the
cylinder). The horizontal dashed line is the expected result for
high kD. The solid line is the best fit using the proposed model.

FIG. 4. Volume fraction (gray dots) and vertical velocity
(black circles) profiles measured at mid level of the cylinder
for different �a. Measurements are along the z axis with origin
at the center of the cylinder. The insets show representative
illustrations of the flow. For small kD, the flow is dense while
for the higher kD (0.5) the flow is less dense with particles
rebounding away from the obstacle.
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particle starting with a zero velocity near the summit of the
cylinder) to the outer velocity (the free fall velocity of
incident particles). Changes in the structure of the flow
versus kD are summarized in Fig. 5. Here we show the
changes occurring for the maximum volume fraction, shear
rate and velocity fluctuations as kD changes. Indeed, this
figure shows that the maximum volume fraction on top of
the obstacle reaches a plateau value near the random loose
packing fraction of 0.55, that the shear rate at mid height
near the cylinder reaches a constant value, near 38 s�1, and
the fluctuations in velocity (the standard deviation) de-
crease to a constant level for kD < 0:1. For kD > 0:1, the
volume fraction on top of the obstacle and the shear rate
decrease but the fluctuations increase. For kD > 0:5, the
velocity profile becomes flat with a barely measurable
shear rate while the fluctuations in velocity increase and
the volume fraction continues to decrease. The fluctuations
in velocity in this regime reflect the fact that the flow is not
dense and that individual particles that rebound at different
locations on the obstacle arrive at the measurement posi-
tion with different speeds. The characteristics described
above delimit the three different regions illustrated by our
measurements of Cd: the free particle flow, the continuum
like flow and the transition region. For high �a (kD < 0:1)
the flow is continuous with a well defined velocity profile, a
small fluctuation level, and the formation of a large density
zone on top of the obstacle (reminiscent of a stagnation
zone). For very low �a, the flow is dominated by single
particles colliding with the obstacle. The transition region
for 0:1< kD < 1 is characterized by the continuous varia-
tion of the shear rate and maximal density. The drag curve

therefore signals a transition from a discrete situation to a
continuous situation as has been remarked for the case of
supersonic gases flowing past a cylinder. Our results bring
new information as to how this transition occurs for the
granular case: it occurs smoothly with the gradual estab-
lishment of a well defined linear velocity profile, with a
well defined shear rate, and a well-defined density profile.
In conclusion, we have carried out measurements of the

drag coefficient versus the flow Knudsen number for a
wide range of flow densities in the case of a cylinder in a
granular flow. The drag coefficient has two limiting values
at high and low Knudsen numbers and shows a smooth
transition as this parameter varies. This behavior is remi-
niscent of that of supersonic gases flowing past a cylinder.
The variation of the drag is related to the flow structure
around the cylinder and its evolution with flow volume
fraction brings new insight into the interaction of a super-
sonic flow with an obstacle. Remarkable changes in the
velocity profiles and density profiles occur as the flow
crosses over from the very dilute regime to the more dense
regime. A simple model is proposed to extrapolate between
the two regimes and capture the essential features of the
transition region.
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FIG. 5. �max on top of the obstacle, shear rate � and the
standard deviation of the vertical velocity �Vy near the mid

level of the cylinder versus kD for steel spheres. Note the
changes occurring near kD ¼ 0:15. Upper graph: the closed
symbols are for steel spheres while the open symbols are for
glass beads (squares and diamonds: different D but fixed �a,
circles: varying �a and fixed D).
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