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We experimentally demonstrate a series of fractional synchronization regimes (Devil’s staircase) in a

spin-torque nano-oscillator driven by a microwave field. These regimes are characterized by rational

relations between the driving frequency and the frequency of the oscillation. An analysis based on the

phase model of auto-oscillator indicates that fractional synchronization becomes possible when the

driving signal breaks the symmetry of the oscillation, while the synchronization ranges are determined

by the geometry of the oscillation orbit. Measurements of fractional synchronization can be utilized to

obtain information about the oscillation characteristics in nanoscale systems not accessible to direct

imaging techniques.
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Downscaling of electronic devices requires ever increas-
ing operating current densities. The out-of-equilibrium
state produced by large currents can lead to new phe-
nomena, providing unique opportunities for novel device
architectures. In particular, high current densities in nano-
scale magnetic devices result in large-amplitude magneti-
zation oscillations, forming the basis for a novel type of
nanoscale microwave oscillator, the spin-torque nano-
oscillator (STNO) [1–4]. STNO is not only one of the
smallest known auto-oscillators, but also a complex non-
linear dynamical system whose frequency is dependent on
the amplitude of the oscillation, due to the dependence of
the demagnetizing fields on the oscillation trajectory.

The nonlinearity of STNO allows one to tune the gen-
eration frequency by electric current, and also enhances its
ability to synchronize to periodic external signals [5],
providing a potential route for enhancing the oscillation
characteristics by mutual synchronization in arrays of
STNO. Following this approach, synchronization of two
[6,7] and even four [8] STNO with similar frequencies has
been recently observed experimentally.

All the previous experiments on the STNO synchroni-
zation utilized a driving signal provided by a microwave
current whose frequency fe was close to the STNO oscil-
lation frequency f0 [9–11]. In this Letter, we utilize a
driving signal provided by a microwave field to experimen-
tally demonstrate that the complex nonlinear oscillation
characteristics of STNO lead to a large class of synchro-
nization phenomena observed not only for fe close to f0,
but also when their ratio r ¼ fe=f0 is close to integer or
certain rational numbers. We also show theoretically that
these synchronization phenomena provide important infor-
mation about the properties of the oscillation.

We used e-beam lithography to fabricate devices with
structure Cu(40)Py(15)Cu(8)Py(3.5)Cu(60), where thick-
nesses are in nm and Py ¼ Ni80Fe20. The free Py(3.5) layer

was patterned into a 100 nm� 50 nm nanopillar, while the
polarizing Py(15) layer was left extended with dimensions
of several micrometers. Magnetic oscillations of the nano-
pillar were induced by a dc bias current I0 > 0 flowing
from the polarizer to the free layer. The microwave driving
field he was generated by a 300 nm� 250 nm Cu micro-
strip antenna fabricated on top of the nanopillar. It was
oriented at 45� with respect to the nanopillar easy axis, and
electrically isolated from STNO by a SiO2ð50Þ layer. The
Oersted field produced by the microstrip was calibrated by
comparing the dependence of f0 on the bias field H0 to its
dependence on the dc current applied to the microstrip. By
applying a microwave current to the microstrip, microwave
fields of up to he ¼ 30 Oewere generated at the location of
STNO without noticeable heating. Our technique enabled
spectroscopic measurements at arbitrary relations between
the driving and the oscillation frequencies, and provided
strong driving essential for the observation of the phe-
nomena described below. The parasitic coupling between
the microstrip and the STNO was less than �20 dB, re-
sulting in induced microwave currents that did not exceed
40 �A. The bias field was H0 ¼ 350 Oe unless specified
otherwise, applied in-plane perpendicular to the micro-
strip. All measurements were performed at 5 K. The re-
ported behaviors were confirmed for three devices.
The characterization of STNO was performed by mea-

surements of auto-oscillation spectra. The peaks exhibited
a typical full width at half maximum (FWHM) of 5 MHz
and Lorentzian line shape characteristic of thermal broad-
ening [Fig. 1(a)] [12,13]. The oscillation frequency in-
creased with increasing H0, and decreased with
increasing I0 [Fig. 1(b)], consistent with the established
properties of similar STNOs [3].
In spectroscopic measurements of oscillation at finite

driving field he, the oscillation frequency f00 remained

close to the free-running frequency f0 ¼ 2:94 GHz for
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most of the values of the driving frequency fe, with the
exception of the regions where the ratio r ¼ fe=f0 is close
to all integer (r ¼ 1, 2, 3, 4) and several rational (r ¼ 3=2,
7=3, 5=2, 7=2) values (Fig. 2). In these regions, f00 follows
a linear relationship with fe, as expected for the synchro-
nized oscillation. Since the spectroscopic peaks observed
at r ¼ 1 are dominated by the parasitic coupling to the
driving signal, in this regime the synchronization can be
identified by the breaks in the f00 � const line. In contrast,

spectroscopic measurements of all the other synchroniza-
tion regimes were performed below the driving frequency,
eliminating the effects of parasitic signals on the spectra,
and enabling us to directly determine the characteristics of
the synchronized oscillations.

An example of spectroscopic measurements for one of
these regimes (r ¼ 2) is shown in Fig. 3(a). The synchro-
nized oscillation peaks become significantly narrower and
their maximum spectral amplitude dramatically increases,
while the oscillation frequency follows an exact relation-
ship f00=fe ¼ 2 within the measurement precision of better

than 0.05% [Fig. 3(b)]. To enable a wide frequency scan

shown in Fig. 3(a), these measurements were performed
with a bandpass of 300 kHz that exceeded the width of the
synchronized peak. Separate measurements at our setup’s
ultimate resolution of 1 kHz showed that synchronization
resulted in an increase of the maximum spectral amplitude
by three orders of magnitude Fig. 3(c), and a similar
magnitude of decrease of FWHM to the smallest value of
1.4 kHz [Fig. 3(d)]. These results demonstrate that the
oscillator becomes fully phase locked with the driving
signal for at least 1 ms (3� 106 oscillation cycles) without
a single phase slip. We note that the total power generated
by STNO is determined by the amplitude of the magneti-
zation oscillation, which is not significantly affected by the
driving field. Indeed, the increase of the peak amplitude is
compensated by the decrease of the linewidth, so that the
total generated power remains approximately constant.
To quantitatively characterize the synchronization, we

define the synchronization interval �fr ¼ ðfe;max �
fe;minÞ=r, where fe;max (fe;min) is the maximum (minimum)

driving frequency at which the synchronization is ob-
served. Although both the integer interval �f2 and the
fractional interval �f5=2 increase with the driving am-

plitude, the value of �f2 depends linearly on he, while
the dependence of �f5=2 on he is strongly nonlinear

[Fig. 4(a)]. Integer synchronization persisted at the small-
est driving signal he ¼ 1:3 Oe used in our measurements,
while the r ¼ 5=2 synchronization disappeared at he <
4 Oe, demonstrating that strong driving provided by our
technique is essential for the observation of fractional
synchronization. The value of �f2 increases at small I0,
exceeding 1 GHz at I0 < 0:9 mA. In contrast, �f5=2 de-

creases at small I0, vanishing at I0 < 0:9 mA [Fig. 4(b)].
The complexity of the observed synchronization pat-

terns suggests that they contain intricate information about

FIG. 2 (color online). Dependence of the oscillation spectra on
the driving frequency, at he ¼ 13 Oe and I0 ¼ 1:3 mA. The
scale indicates the power spectral density (PSD) of the spectral
signal. The values of r ¼ fe=f

0
0 for the identified synchroniza-

tion regimes are labeled.

FIG. 3 (color online). The r ¼ 2 synchronization at I0 ¼
1:3 mA, he ¼ 2 Oe. (a) Oscillation spectra at the labeled values
of fe, acquired with a bandpass of 300 kHz. Dotted line indicates
f ¼ fe=2. (b)–(d) Characteristics of the oscillation peaks ac-
quired with a bandpass of 1 kHz: (c) the ratio of fe to f00, (c) the
peak spectral amplitude A, (d) FWHM of the oscillation peak.
Dashed lines show the synchronization boundaries.

FIG. 1. Free-running oscillation characteristics of STNO.
(a) Circles: a typical oscillation spectrum. Curve: Lorentzian
fit. (b) oscillation frequency vs bias field (solid symbols and
bottom scale), and vs bias current (open symbols and top scale).

PRL 105, 104101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 SEPTEMBER 2010

104101-2



the oscillator. To analyze the mechanisms of synchroniza-
tion, we consider the classic model describing the state of
the oscillator only by the phase � defined to increase
linearly with time in the autonomous regime [14,15].
Under the influence of a periodic driving signal, the dy-
namics can be described by

d�=dt ¼ !0 þ�Re½gð�Þe�i!et� (1)

Here, � is the amplitude of the driving force, !0;e ¼
2�f0;e, and the complex function gð�Þ determined by the

geometry of the oscillation trajectory and the driving signal
describes the position-dependent sensitivity of the oscilla-
tor to the driving force. Since gð�Þ is periodic, it can be
expressed as gð�Þ ¼ P

ngne
in�, where the Fourier compo-

nents gn contain the information about the oscillation
trajectory.

To determine the relation of the function gð�Þ to syn-
chronization, we consider a fractional synchronized state
r ¼ p=q, where p and q are mutually simple integers. The
oscillator completes q cycles during p periods of the driv-
ing force;, i.e., its phase satisfies �ðtþ p=feÞ ¼ �ðtÞ þ
2�q. Expanding it into a Fourier series, �ðtÞ ¼ �ð0Þ þ
!etq=pþP

k�0�ke
�i!et=p and inserting into Eq. (1), we

obtain an equation for�k which can be solved iteratively in
powers of �. The condition of solvability of this equation
determines the synchronization interval �!r.

To the first order in �, only the synchronization at
integer r ¼ p=1 is possible, with the interval

�!p � 2�jgpj: (2)

Fractional synchronization (q > 1) appears only in the
higher orders in �, with intervals �!r / ð�gpÞq. In par-

ticular, for r ¼ p=2

�!p=2 � �2

!0

��������

X

n

gngp�n

��������
: (3)

The linear dependence of �!p on � / he, and the non-

linear dependence of �!p=2 are in agreement with

Fig. 4(a).
It is generally difficult to calculate the function gð�Þ that

determines the synchronization intervals, since it depends
both on the form of the driving signal and the oscillation

trajectory. However, it is possible to experimentally deter-
mine each component gp by measuring the corresponding

synchronization intervals [Eq. (2)]. Moreover, symmetry
analysis described below enables one to determine the
general conditions for the existence of specific synchroni-
zation regimes, providing a qualitative insight into the
mechanism of fractional synchronization.
The oscillation trajectory of STNO is approximately

symmetric with respect to a half-period rotation � ! �þ
� [3]. A microwave field parallel to the oscillation sym-
metry axis s produces a symmetric driving force; i.e., a �
phase shift of the driving signal does not change the
oscillation phase. In this case, all the odd Fourier compo-
nents of gð�Þ vanish, g2nþ1 ¼ 0, and only even integer
synchronization regimes can be observed. On the other
hand, he ? s produces an antisymmetric driving force. In
this case, all the even components of gð�Þ vanish, g2n ¼ 0,
and only odd integer synchronization regimes can be
observed.
To understand the implications of our symmetry analysis

for fractional synchronization, we consider the half-integer
regime [Eq. (3)]. Since the numbers p and q ¼ 2 are
mutually simple, p is odd. Therefore, the indices of the
Fourier components gn and gp�n in Eq. (3) have different

parity. Since the even spectral components describe per-
turbations that are symmetric with respect to a half-period
rotation, and the odd ones describe antisymmetric pertur-
bations, the q ¼ 2 fractional synchronization of a symmet-
ric auto oscillator is possible only if the driving signal
contains both symmetric and antisymmetric components,
or in other words, if the signal breaks the symmetry of the
oscillator. In our experiment, he was parallel toH0, at 45

�
with respect to the nanopillar axis. Modeling shows that, as
a result of the demagnetizing effects, s was rotated by 20�
with respect to he, creating the symmetry-breaking geome-
try necessary for the fractional synchronization.
To confirm the results of our analysis, we performed

numerical simulations of STNO synchronization to a mi-
crowave field (Fig. 5). The temporal evolution of magne-
tization was determined by integration of the Landau-
Lifshitz equation within a macrospin approximation,
which included the spin-torque and the driving field terms,
with the parameter values corresponding to the experimen-
tal conditions of Fig. 2: H0 ¼ 350 Oe oriented at 45� with
the nanopillar easy axis, I0 ¼ 1:3 mA, he ¼ 13 Oe, satu-
ration magnetization Ms ¼ 640 G, easy-axis anisotropy
field Ha ¼ 200 Oe, Gilbert damping constant � ¼ 0:01,
and dimensionless spin-polarization efficiency � ¼ 0:18.
The spectral characteristics of the driven oscillation were
determined by Fourier transformation of the simulated
dynamics.
In agreement with our symmetry analysis, only the even

integer synchronization regimes are prominent for he k s
[Fig. 5(a)], and only the odd integer synchronization re-
gimes are prominent for he ? s [Fig. 5(a)]. In both cases,
small but finite fractional synchronization ranges are

FIG. 4. Dependence of the integer synchronization interval
�f2 (open symbols) and fractional interval �f5=2 (solid sym-

bols) on he (a), and on I0 (b).
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caused by the slight asymmetry of the oscillation trajec-
tory. On the other hand, simulation of the experimental
configuration he k H0 [Fig. 5(c)], corresponding to an
angle of 20� between he and s, produces large integer
and fractional synchronization ranges, in excellent semi-
quantitative agreement with the data (Fig. 2). Additional
simulations for fe < f0 showed that fractional synchro-
nization to symmetry-breaking perturbations is also pos-
sible at r < 1.

Our symmetry analysis is equally applicable to synchro-
nization by microwave current. In this case, the symmetry
of the driving force is determined by the direction of the
current polarization. In the published measurements of the
main synchronization regime r ¼ 1 [9–11], the current
polarization was nearly parallel to s, and consequently
the driving force was approximately symmetric. Since
synchronization with r ¼ 1 requires antisymmetric pertur-
bation [see Eq. (2)], our analysis explains why a large
magnitude of the driving current comparable to I0 was
required in these measurements. In contrast, a significantly
more efficient r ¼ 2 synchronization can be expected in
this geometry.

In conclusion, we have experimentally demonstrated
synchronization of a spin torque nano-oscillator at frac-
tional ratios between the frequency of the driving micro-
wave field and the frequency of the oscillation. The
phenomenon of fractional synchronization opens new
routes for efficient synchronization of auto-oscillators
whose frequencies are not close to each other, and for the
development of novel nanoscale signal processing devices

such as microwave frequency converters. We developed a
general model of synchronization, which shows that frac-
tional synchronization of symmetric oscillators becomes
possible only if the driving force breaks the oscillation
symmetry, and more generally, that the efficiency of syn-
chronization in any regime is determined by the symmetry
of the driving signal. Fractional synchronization for a
controlled symmetry of the driving signal represents a
novel tool for the characterization of auto-oscillators. For
instance, one can determine the orientation of the preces-
sion axis by measuring the dependence of the synchroni-
zation intervals on the direction of the driving field. This
characterization technique is especially important for the
nanoscale oscillators such as STNO, which are not ac-
cessible to the standard imaging and characterization
techniques.
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FIG. 5 (color online). Simulated dependence of f00 on fe, for
different orientations of he with respect to s: (a) he k s,
(b) he ? s, and (c) angle of 20� between he and s corresponding
to the experimental configuration. Prominent synchronization
regimes are labeled.
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