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We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability.

Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the

horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string

segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-

similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments.

This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau

instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic

time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to

excite the instability, this constitutes a generic violation of cosmic censorship.
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Introduction.—While stationary black holes in 4 space-
time dimensions (4D) are stable to perturbations, higher
dimensional analogues are not. Indeed, as first illustrated
by Gregory and Laflamme in the early 1990s [1], black
strings and p-branes are linearly unstable to long wave-
length perturbations in 5 and higher dimensions. Since
then, a number of interesting black objects in higher di-
mensional gravity have been discovered, many of them
exhibiting similar instabilities (see, e.g., [2]).

An open question for all unstable black objects is what
the end state of the perturbed system is. For black strings,
the authors of Ref. [1] conjectured that the instability
would cause the horizon to pinch-off at periodic intervals,
giving rise to a sequence of black holes. One reason for this
conjecture comes from entropic considerations: For a given
mass per unit length and periodic spacing above a critical
wavelength �c, a sequence of hyperspherical black holes
has higher entropy than the corresponding black string.
Classically, event horizons cannot bifurcate without the
appearance of a naked singularity [3]. Thus, reaching the
conjectured end state would constitute a violation of cos-
mic censorship, without ‘‘unnatural’’ initial conditions or
fine-tuning, and be an example of a classical system evolv-
ing to a regime where quantum gravity is required.

This conjecture was essentially taken for granted until
several years later when it was proved that the generators
of the horizon can not pinch-off in finite affine time [4].
From this, it was conjectured that a new, nonuniform black
string end state would be reached [4]. Subsequently, sta-
tionary, nonuniform black string solutions were found
[5,6]; however, they had less entropy than the uniform
string and so could not be the putative new end state, at
least for dimensions lower than 13 [7].

A full numerical investigation studied the system be-
yond the linear regime [8], though not far enough to

elucidate the end state before the code ‘‘crashed.’’ At that
point the horizon resembled spherical black holes con-
nected by black strings, though no definitive trends could
be extracted, still allowing for both conjectured possibil-
ities: (a) a pinch-off in infinite affine time, (b) evolving to a
new, nonuniform state. If (a), a question arises whether
pinch-off happens in infinite asymptotic time; if so, any
bifurcation would never be seen by outside observers, and
cosmic censorship would hold. While this might be a
natural conclusion, it was pointed out in Refs. [9,10] that,
due to the exponentially diverging rate between affine time
and a well-behaved asymptotic time, pinch-off could occur
in finite asymptotic time.
A further body of (anecdotal) evidence supporting the

Gregory-Laflamme (GL) conjecture comes from the strik-
ing resemblance of the equations governing black hole
horizons to those describing fluid flows, the latter of which
do exhibit instabilities that often result in breakup of the
fluid. The fluid-horizon connection harkens back to the
membrane paradigm [11], and also in more recently devel-
oped correspondences [12,13]. In [14] it was shown that
the dispersion relation of Rayleigh-Plateau unstable modes
in hypercylindrical fluid flow with tension agreed well with
those of the GL modes of a black string. Similar behavior
was found for instabilities of a self-gravitating cylinder of
fluid in Newtonian gravity [15]. In [16], by using a pertur-
bative expansion of the Einstein field equations [13] to
relate the dynamics of the horizon to that of a viscous fluid,
the GL dispersion relation was derived to a good approxi-
mation, thus going one step further than showing analo-
gous behavior between fluids and horizons.
What is particularly intriguing about fluid analogies, and

what they might imply about the black string case, is that
breakup of an unstable flow is preceded by formation of
spheres separated by thin necks. For high-viscosity liquids,
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a single neck forms before breakup. For lower-viscosity
fluids, smaller ‘‘satellite’’ spheres can form in the necks,
with more generations forming the lower the viscosity (see
[17] for a review). In the membrane paradigm, black holes
have a lower shear viscosity to entropy ratio than any
known fluid [18].

Here we revisit the evolution of 5D black strings by
using a new code. This allows us to follow the evolution
well beyond the earlier study [8]. We find that the dynam-
ics of the horizon unfolds as predicted by the low-viscosity
fluid analogues: The string initially evolves to a configu-
ration resembling a hyperspherical black hole connected
by thin string segments; the string segments are themselves
unstable, and the pattern repeats in a self-similar manner to
ever-smaller scales. Because of finite computational re-
sources, we cannot follow the dynamics indefinitely. If
the self-similar cascade continues as suggested by the
simulations, arbitrarily small length scales, and in conse-
quence arbitrarily large curvatures, will be revealed outside
the horizon in finite asymptotic time.

Numerical approach.—We solve the vacuum Einstein
field equations in a 5-dimensional (5D) asymptotically
flat space-time with an SOð3Þ symmetry. Since perturba-
tions of 5D black strings violating this symmetry are stable
and decay [1], we do not expect that imposing this sym-
metry qualitatively affects the results presented here.

We use the generalized harmonic formulation of the field
equations [19] and adopt a Cartesian coordinate system
related to spherical polar coordinates via �xi ¼
ð�t; �x; �y; �z; �wÞ ¼ ðt; r cos� sin�; r sin� sin�; r cos�; zÞ. The
black string horizon has topology S2 � R; ð�;�Þ are coor-
dinates on the 2-sphere, and z ( �w) is the coordinate in the
string direction, which we make periodic with length L.
We impose a Cartesian harmonic gauge condition, i.e.,
r�r� �xi ¼ 0, as empirically this seems to result in more
stable numerical evolution compared to spherical har-
monic coordinates. The SOð3Þ symmetry is enforced by
using the variant of the ‘‘cartoon’’ method [20] described
in [19], where we evolve only a �y ¼ �z ¼ 0 slice of the
space-time. We further add constraint damping [21], which
introduces two parameters � and �; we use (�, � ¼ 1,
�0:5), where a nonzero � is essential to damp an unstable
zero-wavelength mode arising in the z direction.

We discretize the equations by using 4th-order finite
difference approximations and integrate in time by using
4th-order Runge-Kutta. To resolve the small length scales
that develop during evolution, we use Berger and Oliger
adaptive mesh refinement. Truncation error estimates are
used to dynamically generate the mesh hierarchy, and we
use a spatial and temporal refinement ratio of 2.

At the outer boundary we impose Dirichlet conditions,
with the metric set to that of the initial data. These con-
ditions are not strictly physically correct at finite radius,
though the outer boundary is placed sufficiently far that it
is causally disconnected from the horizon for the time of
the simulation. We use black hole excision on the inner

surface; namely, we find the apparent horizon (AH) by
using a flow method and dynamically adjust this boundary
(the excision surface) to be some distance within the AH.
Because of the causal nature of space-time inside the AH,
no boundary conditions are placed on the excision surface.
We adopt initial data describing a perturbed black string

of mass per unit length M and length L ¼ 20M � 1:4Lc

(Lc is the critical length above which all perturbations are
unstable). These data were used in [8], and we refer the
reader to that work for further details.
We evaluate the following curvature scalars on the AH:

K ¼ IR4
AH=12; S ¼ 27ð12J2I�3 � 1Þ þ 1; (1)

where I ¼ RabcdR
abcd, J ¼ RabcdR

cdefRef
ab, and RAH is

the areal radius of the AH at the corresponding point. K
and S have been scaled to evaluate to f6; 1g for the hyper-
spherical black hole and black string, respectively.
Results.—The results described here are from simula-

tions where the computational domain is ðr; zÞ 2
ð½0; 320M� � ½0; 20M�Þ. The coarsest grid covering the
entire domain has a resolution of ðNr; NzÞ ¼ ð1025; 9Þ
points. For convergence studies we ran simulations with
3 values of the maximum estimated truncation error �:
[‘‘low’’, ‘‘medium’’, and ‘‘high’’] resolution have � ¼
½�0; �0=8; �0=64�, respectively. This leads to an initial hier-
archy where the horizon of the black string is covered by 4,
5, and 6 additional refined levels for the low to high
resolutions, respectively. Each simulation was stopped
when the estimated computational resources required for
continued evolution were prohibitively high (which natu-
rally occurred later in physical time for the lower resolu-
tions); by then the hierarchies were as deep as 17 levels.
Figure 1 shows the integrated AH area A within z 2

½0; L� versus time. At the end of the lowest resolution run,
the total area is A ¼ ð1:369� 0:005ÞA0 [22], where A0 is
the initial area; interestingly, this almost reaches the value
of 1:374A0 that an exact 5D black hole of the same total
mass would have. Figure 2 shows snapshots of embedding
diagrams of the AH, and Fig. 3 shows the curvature invar-
iants evaluated on the AH at the last time step, both from
the medium resolution run.
The shape of the AH, and that the invariants are tending

to the limits associated with pure black strings or black
holes at corresponding locations on the AH, suggests it is
reasonable to describe the local geometry as being similar
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FIG. 1 (color online). (Normalized) apparent horizon area vs
time.
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to a sequence of black holes connected by black strings.
This also strongly suggests that satellite formation will
continue self-similarly, as each string segment resembles
a uniform black string that is sufficiently long to be un-
stable. Even if at some point in the cascade shorter seg-
ments were to form, this would not be a stable
configuration as generically the satellites will have some
nonzero z velocity, causing adjacent satellites to merge and
effectively lengthening the connecting string segments.
With this interpretation, we summarize key features of
the AH dynamics in Table I.

We estimate when this self-similar cascade will end. The
time when the first satellite appears is controlled by the
perturbation imparted by the initial data; here that is
T0=M � 118. Subsequent time scales should approxi-
mately represent the generic development of the instability.
The time for the first instability after that sourced by the
initial data is T1=M � 80. Beyond that, with the caveats
that we have a small number of points and poor control
over errors at late times, each subsequent instability un-
folds on a time scale X � 1=4 times that of the preceding
one. This is to be expected if, as for the exact black string,
the time scale is proportional to the string radius. The time
t0 of the end state is then t0 � T0 þ

P1
i¼0 T1X

i ¼ T0 þ
T1=ð1� XÞ. For the data here, t0=M � 231; then the local
string segments reach zero radius, and the curvature visible
to exterior observers diverges. Figure 4 shows a few points
on the AH, scaled assuming this behavior. In the Rayleigh-
Plateau analogue, the shrinking neck of a fluid stream has a
self-similar scaling solution that satisfies r / ðt0 � tÞ, or
d lnr=d½� lnðt0 � tÞ� ¼ �1, where r is the stream radius
(see [23], and [24] for extensions to higher dimensions); to
within 10%–20%, this is the average slope we see (e.g.,
Fig. 4) at string segments of the AH at late times.
Conclusions.—We have studied the dynamics of a per-

turbed, unstable 5D black string. The horizon behaves
similarly to the surface of a stream of low-viscosity fluid
subject to the Rayleigh-Plateau instability. Multiple gen-
erations of spherical satellites, connected by ever-thinner
string segments, form. Curvature invariants on the horizon
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FIG. 2 (color online). Embedding diagram of the apparent
horizon at several instances in the evolution of the perturbed
black string, from the medium resolution run. R is areal radius,
and the embedding coordinate Z is defined so that the proper
length of the horizon in the space-time z direction (for a fixed t,
�, �) is exactly equal to the Euclidean length of RðZÞ in the
above figure. For visual aid, copies of the diagrams reflected
about R ¼ 0 have also been drawn in. The light (dark) lines
denote the first (last) time from the time segment depicted in the
corresponding panel. The computational domain is periodic in z
with period �z ¼ 20M; at the initial (final) time of the simula-
tion �Z ¼ 20M (�Z ¼ 27:2M). See [28].
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FIG. 3 (color online). Curvature invariants evaluated on the
apparent horizon at the last time of the simulation depicted in
Fig. 2. The invariant K evaluates to 1 for an exact black string
and 6 for an exact spherical black hole, similarly for S (1).

TABLE I. Properties of the evolving black string apparent
horizon, interpreted as proceeding through several self-similar
generations, where each local string segment temporarily
reaches a near-steady state before the onset of the next GL
instability. ti is the time when the instability has grown to where
the nascent spherical region reaches an areal radius 1.5 times the
surrounding string-segment radius Rs;i, which has an estimated

proper length Ls;i (the critical L=R is�7:2 [1]). ns is the number

of satellites that form per segment, that each attain a radius Rh;f

measured at the end of the simulation. Errors, where appropriate,
come from convergence tests. After the second generation the
number and distribution of satellites that form depend sensitively
on grid parameters, and perhaps the only ‘‘convergent’’ result we
have then is that at roughly t ¼ 223 a third generation does
develop. We surmise the reason for this is that the long parent
string segments could have multiple unstable modes with similar
growth rates, and which is first excited is significantly affected
by truncation error. We have had only the resources to run the
lowest resolution simulation for sufficiently long to see the onset
of the 4th generation, hence the lack of error estimates and the
presence of question marks in the corresponding row.

Gen. ti=M Rs;i=M Ls;i=Rs;i ns Rh;f=M

1 118:1� 0:5 2.00 10.0 1 4:09� 0:5%

2 203:1� 0:5 0:148� 1% 105� 1% 1 0:63� 2%

3 223� 2 0:05� 20% � 102 >1 0.1–0.2

4 � 227 � 0:02 � 102 >1ð?Þ ?
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suggest that this is a self-similar process, where at each
stage the local string or spherical segments resemble the
corresponding exact solutions. Furthermore, the time scale
for the formation of the next generation is proportional to
the local string radius, implying the cascade will terminate
in finite asymptotic time. Since local curvature scalars
grow with inverse powers of the string radius, this end
state will thus be a naked, curvature singularity. If quantum
gravity resolves these singularities, a series of spherical
black holes will emerge. However, small momentum per-
turbations in the extra dimension would induce the merger
of these black holes; thus, for a compact extra dimension
the end state of the GL instability will be a single black
hole with spherical topology.

The kind of singularity reached here via a self-similar
process is akin to that formed in critical gravitational
collapse [25]; however, here no fine-tuning is required.
Thus, 5 (and presumably higher) -dimensional Einstein
gravity allows solutions that generically violate cosmic
censorship. Angular momentum will likely not alter this
conclusion, since as argued in [13], and shown in [26],
rotation does not suppress the unstable modes and, more-
over, induces superradiant and gyrating instabilities [27].
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FIG. 4 (color online). Logarithm of the areal radius vs loga-
rithm of time for select points on the apparent horizon from the
simulation depicted in Fig. 2. We have shifted the time axis
assuming self-similar behavior; the putative naked singularity
forms at asymptotic time t=M � 231. The coordinates at z ¼ 15,
5, and 4.06 correspond to the maxima of the areal radii of the first
and second generation satellites and one of the third generation
satellites at the time the simulation stopped. The value z ¼ 6:5 is
a representative slice in the middle of a piece of the horizon that
remains stringlike throughout the evolution.
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