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We invoke the black-hole–qubit correspondence to derive the classification of four-qubit entanglement.

The U-duality orbits resulting from timelike reduction of string theory from D ¼ 4 to D ¼ 3 yield 31

entanglement families, which reduce to nine up to permutation of the four qubits.
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Recent work has established some intriguing corre-
spondences between two very different areas of theoretical
physics: the entanglement of qubits in quantum informa-
tion theory (QIT) and black holes in string theory. See [1]
for a review. In particular, there is a one-to-one correspon-
dence between the classification of three-qubit entangle-
ment [2] and the classification of extremal black holes in
the STU supergravity theory [3,4] that appears in the
compactification of string theory from D ¼ 10 to D ¼ 4
dimensions. Moreover, the Bekenstein-Hawking black
hole entropy is provided by the three-way entanglement
measure.

The purpose of this Letter is to use this black-hole–qubit
correspondence to address the much more difficult prob-
lem of classifying four-qubit entanglement, currently an
active area of research in QIT as experimentalists now
control entanglement with four qubits [5]. Although two
and three-qubit entanglement is well understood, the lit-
erature on four qubits can be confusing and seemingly
contradictory, as illustrated in Table I. This is due in part
to genuine calculational disagreements, but in part to the
use of distinct (but in principle consistent and complemen-
tary) perspectives on the criteria for classification. On the
one hand there is the ‘‘covariant’’ approach which distin-
guishes the orbits of the equivalence group of stochastic
local operations and classical communication (SLOCC) by
the vanishing or not of covariants or invariants. This phi-
losophy is adopted for the three-qubit case in [2,13], for
example, where it was shown that three qubits can be
tripartite entangled in two inequivalent ways, denoted W
and GHZ (Greenberger-Horne-Zeilinger). The analogous
four-qubit case was treated, with partial results, in [14]. On
the other hand, there is the ‘‘normal form’’ approach which
considers ‘‘families’’ of orbits. Any given state may be
transformed into a unique normal form. If the normal form
depends on some of the algebraically independent SLOCC
invariants it constitutes a family of orbits parametrized
by these invariants. On the other hand a parameter-
independent family contains a single orbit. This philoso-
phy is adopted for the four-qubit case

j�i ¼ aABCDjABCDi A; B;C;D ¼ 0; 1

in [11,12]. Up to permutation of the four qubits, these

authors found six parameter-dependent families called
Gabcd, Labc2 , La2b2 , La303��1

, Lab3 , La4 and three

parameter-independent families called L03��103��1
, L05��3

,

L07��1
. For example, a family of orbits parametrized by all

four of the algebraically independent SLOCC invariants is
given by the normal form Gabcd:

aþ d

2
ðj0000i þ j1111iÞ þ a� d

2
ðj0011i þ j1100iÞ

þ bþ c

2
ðj0101i þ j1010iÞ þ b� c

2
ðj1001i þ j0110iÞ;

(1)

where a; b; c; d 2 C. To illustrate the difference between
these two approaches, consider the separable EPR-EPR
state ðj00i þ j11iÞ � ðj00i þ j11iÞ. Since this is obtained
by setting b ¼ c ¼ d ¼ 0 in (1) it belongs to the Gabcd

family, whereas in the covariant approach it forms its own
class. Similarly, a totally separable A-B-C-D state, such as
j0000i, for which all covariants/invariants vanish, belongs
to the family Labc2 , which also contains genuine four-way

entangled states. These interpretational differences were
also noted in [7].
Our string-theoretic framework lends itself naturally to

the ‘‘normal form’’ perspective. We considerD ¼ 4 super-
gravity theories in which the moduli parametrize a sym-
metric space of the form M4 ¼ G4=H4, where G4 is the
global U-duality group and H4 is its maximal compact
subgroup. After a further timelike reduction to D ¼ 3 the
moduli space becomes a pseudo-Riemannian symmetric
space M�

3 ¼ G3=H
�
3 , where G3 is the D ¼ 3 duality group

and H�
3 is a noncompact real form of the maximal compact

subgroup H3. One finds that geodesic motion on M�
3 cor-

responds to stationary solutions of the D ¼ 4 theory [15–
20]. These geodesics are parametrized by the Lie algebra
valued matrix of Noether charges Q and the problem of
classifying the spherically symmetric extremal (nonextre-
mal) black hole solutions consists of classifying the nilpo-
tent (semisimple) orbits ofQ. (Nilpotent meansQn ¼ 0 for
some sufficiently large n.)
In the case of the STU model the D ¼ 3 moduli space

G3=H
�
3 is SOð4; 4Þ=½SLð2;RÞ�4 (a paraquaternionic mani-

fold), which yields the Lie algebra decomposition
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soð4; 4Þ ffi ½slð2;RÞ�4 � ð2; 2; 2; 2Þ: (2)

The relevance of (2) to four qubits was pointed out in [1]
and recently spelled out more clearly by Levay [20] who
relates four qubits toD ¼ 4 STU black holes. The Kostant-
Sekiguchi correspondence [21] then implies that the nilpo-
tent real orbits of SOð4; 4Þ acting on the adjoint represen-
tation 28 are in one-to-one correspondence with the
nilpotent complex orbits of ½SLð2;CÞ�4 acting on the fun-
damental representation (2, 2, 2, 2) and hence with the
classification of four-qubit entanglement. Note further-
more that it is the complex qubits that appear automati-
cally, thereby relaxing the restriction to real qubits
(sometimes called rebits) that featured in earlier versions
of the black-hole–qubit correspondence.

Our main result, summarized in Table II, is that there are
31 entanglement families which reduce to nine up to
permutations of the four qubits. From Table I we see that
the nine agrees with [11,12] while the 31 is new. As far as
we are aware, the nine four-qubit ½SLð2;CÞ�4 cosets are
also original.

The nilpotent orbits required by the Kostant-Sekiguchi
theorem are those of SO0ð4; 4Þ, where the 0 subscript
denotes the component connected to the identity. These
orbits may be labeled by ‘‘signed’’ Young tableaux, often
referred to as ab diagrams in the mathematics literature.
See [22] and the references therein. Each signed Young
tableau, as listed in Table II, actually corresponds to a
single nilpotent O(4, 4) orbit of which the SO0ð4; 4Þ nilpo-
tent orbits are the connected components. Since O(4,4) has
four components, for each nilpotent O(4,4) orbit there may
be either 1, 2, or 4 nilpotent SO0ð4; 4Þ orbits. This number
is also determined by the corresponding signed Young
tableau. If the middle sign of every odd length row is
‘‘�’’ (‘‘þ’’) there are 2 orbits and we label the diagram
to its left (right) with a I or a II. If it only has even length
rows there are 4 orbits and we label the diagram to both its
left and right with a I or a II. If it is none of these it is said to
be stable and there is only one orbit. The signed Young
tableaux together with their labelings, as listed in Table II,
give a total of 31 nilpotent SO0ð4; 4Þ orbits, which are
summarized in Fig. 1. We also supply the complete list

of the associated cosets in Table II, some of which may be
found in [18].
The STU model describesN ¼ 2 supergravity coupled

to three vector multiplets and the Hawking temperature and
Bekenstein-Hawking entropy of the STU black holes will
depend on their mass and a maximum of eight charges
(four electric and four magnetic). Through scalar dressing,
these charges can be grouped into the N ¼ 2 central
charge z and three ‘‘matter charges’’ za (a ¼ 1, 2, 3),
which exhibit a triality (corresponding to permutation of
three of the qubits). The black holes are divided into
extremal or nonextremal according as the temperature is
zero or not. The orbits are nilpotent or semisimple, respec-
tively. Depending on the values of the charges, the ex-
tremal black holes are further divided into small or large
according as the entropy is zero or not. The small ones are
termed lightlike, critical, or doubly critical according as the
minimal number of representative electric or magnetic
charges is 3, 2, or 1. The lightlike case is split into one
1=2-BPS solution, where the charges satisfy z1 ¼ 0, jzj2 ¼
4jz2j2 ¼ 4jz3j2, and three non-BPS solutions, where the
central charges satisfy z ¼ 0, jz1j2 ¼ 4jz2j2 ¼ 4jz3j2 or
z2 ¼ 0, jz3j2 ¼ 4jz1j2 ¼ 4jzj2 or z3 ¼ 0, jz2j2 ¼ 4jz1j2 ¼
4jzj2. The critical case splits into three 1=2-BPS solutions
with z ¼ za � 0, zb ¼ zc ¼ 0 and three non-BPS cases
with z ¼ za � 0, zb ¼ zc � 0, where a � b � c. The
doubly critical case is always 1=2-BPS with jzj2 ¼ jz1j2 ¼
jz2j2 ¼ jz3j2 and vanishing sum of the za phases. The large
black holes may also be 1=2-BPS or non-BPS. One
subtlety is that some extremal cases, termed ‘‘extremal,’’
cannot be obtained as limits of nonextremal black holes.
The matching of the extremal classes to the nilpotent orbits
is given in Table II.
It follows from the Kostant-Sekiguchi theorem that there

are 31 nilpotent orbits for the SLOCC-equivalence group
acting on the representation space of four qubits. For each
nilpotent orbit there is precisely one family of SLOCC
orbits since each family contains one nilpotent orbit on
setting all invariants to zero. The nilpotent orbits and their
associated families are summarized in Table II, which is
split into upper and lower sections according as the nilpo-
tent orbits belong to parameter-dependent or parameter-
independent families.

TABLE I. Various results on four-qubit entanglement.

Paradigm Author Year Reference Result modulo permutations Result including permutations

Wallach 2004 [6] ? 90

Lamata et al. 2006 [7] 8 genuine 5 degenerate 16 genuine 18 degenerate

Classes Cao et al. 2007 [8] 8 genuine 4 degenerate 8 genuine 15 degenerate

Li et al. 2007 [9] ? �31 genuine 18 degenerate

Akhtarshenas et al. 2010 [10] ? 11 genuine 6 degenerate

Verstraete et al. 2002 [11] 9 ?

Families Chterental et al. 2007 [12] 9 ?

String theory 2010 9 31
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If one allows for the permutation of the four qubits the
connected components of each Oð4; 4Þ orbit are reidenti-
fied reducing the count to 17. Moreover, these 17 are
further grouped under this permutation symmetry into
just nine nilpotent orbits. It is not difficult to show that
these nine cosets match the nine families of [11,12], as

listed in the final column of Table II (provided we adopt the
version of Lab3 presented in [12] rather than in [11]). For

example, the state representative L03��103��1
,

j0111i þ j0000i; (3)

TABLE II. Each black hole nilpotent S0ð4; 4Þ orbit corresponds to a 4-qubit nilpotent ½SLð2;CÞ�4 orbit. zH is the horizon value of the
N ¼ 2, D ¼ 4 central charge.

STU black holes dimR Four qubits

Description Young tableaux SO0ð4; 4Þ coset ½SLð2;CÞ�4 coset Nilpotent representation Family

Trivial Trivial SO0ð4;4Þ
SO0ð4;4Þ 1 ½SLð2;CÞ�4

½SLð2;CÞ�4 0 2 Gabcd

Doubly

critical
1
2 BPS

SO0ð4;4Þ
½SLð2;RÞ�SOð2;2;RÞ�2½ð2;4Þð1Þ�1ð2Þ� 10 ½SLð2;CÞ�4

½SOð2;CÞ�32C4
j0110i 2 Labc2

SO0ð4;4Þ
SOð3;2;RÞ2½ð5�1Þð2Þ�

Critical,
1
2 BPS and

non-BPS

SO0ð4;4Þ
SOð2;3;RÞ2½ð5�1Þð2Þ� 12 ½SLð2;CÞ�4

½SOð3;CÞ�C��½SOð2;CÞ2C� j0110i þ j0011i 2 La2b2

SO0ð4;4Þ
SPð4;RÞ2½ð5�1Þð2Þ�

Lightlike
1
2 BPS and

non-BPS

SO0ð4;4Þ
SLð2;RÞ2½ð2�2Þð1Þ�ð3�1Þð2Þ�2ð3Þ� 16 ½SLð2;CÞ�4

½SOð2;CÞ2C��C2
j0110i þ j0101i

þj0011i
2 La203��1

Large

non-BPS

zH � 0

SO0ð4;4Þ
SOð1;1;RÞ�SOð1;1;RÞ2½ðð2;2Þ�ð3;1ÞÞð2Þ�1ð4Þ� 18 ½SLð2;CÞ�4

C3

i
ffiffi

2
p ðj0001i

þj0010i � j0111i
�j1011iÞ

2 Lab3

SO0ð4;4Þ
SOð2;1;RÞ2½1ð2Þ�3ð4Þ�1ð6Þ�

’’Extremal’’ SO0ð4;4Þ
SOð1;2;RÞ2½1ð2Þ�3ð4Þ�1ð6Þ� 20 ½SLð2;CÞ�4

SOð2;CÞ�C ij0001i þ j0110i
�ij1011i

2 La4

SO0ð4;4Þ
Spð2;RÞ2½1ð2Þ�3ð4Þ�1ð6Þ�

Large
1
2 BPS and

non-BPS

zH ¼ 0

SO0ð4;4Þ
SOð2;RÞ�SOð2;RÞ2½ðð2;2Þ�ð3;1ÞÞð2Þ�1ð4Þ� 18

½SLð2;CÞ�4
½SOð2;CÞ�2�C

j0000i þ j0111i 2 L03��103��1

‘‘Extremal’’ SO0ð4;4Þ
R3ð2Þ�R1ð4Þ�R2ð6Þ 22 ½SLð2;CÞ�4

C j0000i þ j0101i
þj1000i þ j1110i

2 L05�3

‘‘Extremal’’ SO0ð4;4Þ
Rð2Þ�R2ð6Þ�Rð10Þ 24 ½SLð2;CÞ�4

id j0000i þ j1011i
þj1101i þ j1110i

2 L07��1
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is left invariant by the ½SOð2;CÞ�2 � C subgroup, where
½SOð2;CÞ�2 is the stabilizer of the three-qubit GHZ state
[13]. In contrast, the four-way entangled family L07��1

,

which is the ‘‘principal’’ nilpotent orbit [21], is not left
invariant by any subgroup. Note that the total of 31 does
not follow trivially by permuting the qubits in these nine.
Naive permutation produces far more than 31 candidates
which then have to be reduced to SLOCC inequivalent
families.

There is a satisfying consistency of this process with
respect to the covariant approach. For example, the cova-
riant classification has four biseparable classes A-GHZ,
B-GHZ, C-GHZ, and D-GHZ which are then identified
as a single class under the permutation symmetry. These
four classes are in fact the four nilpotent orbits correspond-
ing to the families L03��103��1

in Table II, which are also

identified as a single nilpotent orbit under permutations.
Similarly, each of the four A�W classes is a nilpotent
orbit belonging to one of the four families labeled La203��1

which are again identified under permutations. A less tri-
vial example is given by the six A-B-EPR classes of the
covariant classification. These all lie in the single family
La2b2 of [11], which is defined up to permutation. Consult-

ing Table II we see that, when not allowing permutations,
this family splits into six pieces, each containing one of the
six A-B-EPR classes. Finally, the single totally separable
class A-B-C-D is the single nilpotent orbit inside the single
family Labc2 which maps into itself under permutations.

Falsifiable predictions in the fields of high-energy phys-
ics or cosmology are hard to come by, especially for
ambitious attempts, such as string or M theory, to accom-
modate all the fundamental interactions. In the field of
quantum information theory, however, previous work has
shown that the stringy black-hole–qubit correspondence
can reproduce well-known results in the classification of
two- and three-qubit entanglement. In this Letter this cor-
respondence has been taken one step further to predict new
results in the less well-understood case of four-qubit en-
tanglement that can in principle be tested in the laboratory.
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[22] D. Z. Djoković, N. Lemire, and J. Sekiguchi, Tohoku

Math. J. 53, 395 (2001).

[18]0 [22,14]10

[3,15]12

[3,15]12

I,II[24]12
I,II

I,II[3,22,1]16

[3,22,1]16
I,II

I,II[32,12]18

[32,12]18

[32,12]18
I,II

[5,13]20

[5,13]20

I,II[42]20
I,II

I,II[5,3]22

[5,3]22
I,II

I,II[7,1]24

[7,1]24
I,II

FIG. 1. SOð4; 4Þ Hasse diagram. The integers inside the bracket indicate the structure of the appropriate Young tableau. The
subscript indicates the real dimension of the orbit. The arrows indicate their closure ordering defining a partial order [22].

PRL 105, 100507 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 SEPTEMBER 2010

100507-4

http://dx.doi.org/10.1016/j.physrep.2008.11.002
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1016/0550-3213(95)00555-2
http://dx.doi.org/10.1016/0550-3213(95)00555-2
http://dx.doi.org/10.1103/PhysRevD.54.6293
http://dx.doi.org/10.1038/nphys1372
http://dx.doi.org/10.1038/nphys1372
http://dx.doi.org/10.1103/PhysRevA.75.022318
http://dx.doi.org/10.1103/PhysRevA.75.022318
http://dx.doi.org/10.1140/epjd/e2007-00148-y
http://dx.doi.org/10.1140/epjd/e2007-00148-y
http://arXiv.org/abs/1003.2762
http://dx.doi.org/10.1103/PhysRevA.65.052112
http://dx.doi.org/10.1103/PhysRevA.80.032326
http://dx.doi.org/10.1088/0305-4470/36/38/309
http://dx.doi.org/10.1088/0305-4470/36/38/309
http://dx.doi.org/10.1007/BF01217967
http://dx.doi.org/10.1088/1126-6708/2007/09/056
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.023
http://dx.doi.org/10.1007/JHEP01(2010)038
http://dx.doi.org/10.1007/JHEP01(2010)038
http://dx.doi.org/10.1088/1126-6708/2009/07/003
http://dx.doi.org/10.1088/1126-6708/2009/07/003
http://dx.doi.org/10.1103/PhysRevD.82.026003
http://dx.doi.org/10.2748/tmj/1178207418
http://dx.doi.org/10.2748/tmj/1178207418

