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We analyze the Jaynes-Cummings model of quantum optics, in the strong-dispersive regime. In the bad-

cavity limit and on time scales short compared to the atomic coherence time, the dynamics are those of a

nonlinear oscillator. A steady-state nonperturbative semiclassical analysis exhibits a finite region of

bistability delimited by a pair of critical points, unlike the usual dispersive bistability from a Kerr

nonlinearity. This analysis explains our quantum trajectory simulations that show qualitative agreement

with recent experiments from the field of circuit quantum electrodynamics.
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The Jaynes-Cummings (JC) Hamiltonian provides a
quantum model for a two-level system (qubit) interacting
with a quantized electromagnetic mode. It is widely appli-
cable to experiments with natural atoms as well as for
solid-state ‘‘artificial atoms’’ [1]. The JC Hamiltonian
can be diagonalized analytically, but in the presence of a
drive �ðtÞ and dissipation the open-system model becomes
nontrivial, with the effective behavior depending strongly
on the specific parameter regime. The case where the
cavity relaxation rate � greatly exceeds the two-level dis-
sipation and dephasing rates �, �� is known as the bad-

cavity limit. The strong-dispersive regime [2,3] of the JC
model describes the situation that the presence of the qubit
causes the cavity frequency to be shifted by an amount �
much greater than the cavity linewidth. Recent experi-
ments [4], which operate in both the strong-dispersive
regime and the bad-cavity limit, show a nontrivial response
under conditions of strong drive, arousing interest due to its
usefulness for high-fidelity qubit readout. A characteristic
feature of the JC model is that for very high excitation
number N � 1, the excitation number-dependent shift
obeys �ðNÞ ! 0: the transition frequency returns to the
bare cavity frequency. In the presence of dissipation this
happens effectively when �ðNÞ & �, and for all larger N
the response of the system is linear with respect to the
drive. We describe this behavior as setting in at an excita-
tion number Nbare, with the definition �ðNbareÞ ¼ �. In the
strong-dispersive regime we have Nbare � Ncrit, where
Ncrit as usual denotes the excitation level where the dis-
persive approximation breaks down (defined below). The
latter inequality has an important consequence for the
theory: a perturbative expansion in the small parameter
N=Ncrit, typically useful [5] in the dispersive regime, is not
applicable for the interesting regime N >Nbare where the
system regains the linear response.

In this Letter we consider the JC model under very
strong driving, such that N � Ncrit. Our main result is
that there exists a threshold drive �C2 at which the photon
occupation increases by several orders of magnitude over a
small range of the drive amplitude. We perform both

quantum trajectory simulations and a nonperturbative
semiclassical analysis, including the drive and the cavity
damping. Our results are in qualitative agreement with
recent experiments [4] for a circuit quantum electrody-
namics (QED) device [6] containing 4 transmon [7,8]
qubits, demonstrating that the JC model captures the
essential physics despite making an enormous simplifica-
tion of the full system Hamiltonian.
The behavior of the JC nonlinearity goes beyond the

Kerr nonlinearity that is often considered. Dispersive
bistability [9] from a Kerr nonlinearity is well known in
atomic cavity QED [10]. It has been implemented in the
solid state via the nonlinearity of a Josephson junction [11],
and in the circuit QED architecture has produced high-
fidelity readout of qubits [12,13]. Similar schemes have
been implemented with nonlinear micromechanical reso-
nators [14]. However, unlike the Kerr anharmonicity, the
JC anharmonicity does not remain constant but rather
diminishes toward zero as the cavity occupation is in-
creased. As a result, for sufficiently strong drive the re-
sponse of the JC model must return to the linear response
of the bare cavity. Instead of coherent driving, an alter-
native way to saturate the qubit and cause the JC system
response to return to the bare cavity response is to couple
the system to a bath at elevated temperature, as has been
investigated theoretically [15] and experimentally [16].
Our analysis is applicable to any experiment that can

reach the strong-dispersive limit and drive sufficiently
strongly, but for concreteness we adopt the language and
typical parameters of the field of circuit QED. We write the
driven JC Hamiltonian

H ¼ !ca
yaþ!q

2
�z þ gða�þ þ ay��Þ þ �ðtÞffiffiffi

2
p ðaþ ayÞ;

with cavity frequency !c=2�, qubit frequency !q=2�,

coupling strength g, drive �ðtÞ ¼ � cosð!dtÞ of amplitude
� and frequency!d=2�. Operating in the strong-dispersive
bad-cavity regime defines a hierarchy of scales

�; �� � � � g2=� � g � � � !c; (1)

PRL 105, 100505 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 SEPTEMBER 2010

0031-9007=10=105(10)=100505(4) 100505-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.100505


where � ¼ !q �!c is the qubit-cavity detuning. We can

make the standard transformation of Ref. [17] ~H ¼
T�1HT to decouple the qubit and cavity

~H¼!ca
yaþð!c ��Þ�z

2
þ �ffiffiffi

2
p ðaþayÞcosð!dtÞ; (2)

dropping terms from the transformed drive that are

suppressed as OðN�1=2Þ and Oðg=�Þ. The resulting
Hamiltonian would be trivial except that it involves the

operator � ¼ ð�2 þ 4g2NÞ1=2, which depends on the total
number of excitations, N ¼ ayaþ �z=2þ 1=2. For pho-
ton decay at rate � we can write the decoupled quantum
master equation after dropping small terms,

_	 ¼ �i½ ~H;	� þ �ð½a	; ay� þ ½a; 	ay�Þ=2; (3)

which we integrate numerically in a truncated Hilbert space
using the method of quantum trajectories, after making
the rotating wave approximation with respect to the drive.
The experiments we wish to describe are performed on a
time scale short compared to the qubit decoherence times
��1, ��1

� , and we therefore treat�z as a constant of motion.

The remaining degree of freedom constitutes a Jaynes-
Cummings oscillator. Note that the qubit relaxation and
dephasing terms that we have dropped involve the �� and
�z operators and would transform in a nontrivial way under
the decoupling transformation T [5]. The results of the
numerical integration for �z ¼ �1 are compared with
recent experimental data [18] in Fig. 1, where we show
the average heterodyne amplitude jhaij as a function of
drive frequency and amplitude. Despite the presence of 4
qubits in the device, the fact that higher levels of the
transmons are certainly occupied for such strong driving

[19], and the fact that the Rabi Hamiltonian is more appro-

priate for such large photon occupation,
ffiffiffiffi
N

p
g�!c, the JC

model nevertheless qualitatively reproduces the features
of the experiment [20]. In particular, for weak driving we
see a response as expected at the dispersively shifted cavity
frequency !c � �, with � ¼ g2=�, which shifts towards
lower frequencies as the drive increases. For stronger driv-
ing a dip appears in the response, which we interpret as a
consequence of plotting the ensemble-averaged jhaij in the
classically bistable region, as we discuss below. For in-
creasing drive the dip shifts to lower frequencies; finally for
the strongest driving, the response becomes centered at the
bare cavity frequency !c=2� and is single-peaked and
extremely strong.
Because of the large number of photons in the system, it

is possible to form a semiclassical model, similar to
Refs. [21,22]. This will be a good approximation in the
case that the ratio of the anharmonicity of the dispersive
Hamiltonian to the decay rate is such that the N � 1 $ N
photon peak overlaps well with the N $ N þ 1 photon
peak, N � Nsc, where Nsc ¼ g4=��3 (for the parameters
of Fig. 1(b), Nsc ¼ 1:6). In the opposite limit we will see
photon blockade and associated effects, as in Ref. [23].
Recently it was shown that it is possible to have a coex-
istence of both the semiclassical and quantum solutions for
a certain range of parameters of the system and drive [24].
The semiclassical model will remain valid for N >Ncrit,
where a perturbative expansion of the Hamiltonian (2) in
terms of N=Ncrit fails to converge, where Ncrit ¼ �2=4g2.
We rewrite the Hamiltonian Eq. (2) using canonical vari-

ables X ¼ ffiffiffiffiffiffiffiffi
1=2

p ðay þ aÞ and P ¼ i
ffiffiffiffiffiffiffiffi
1=2

p ðay � aÞ,
~H ¼ !c

2
ðX2 þ P2 þ �zÞ þ �X cosð!dtÞ

� �z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2ðX2 þ P2 þ �zÞ þ �2

q
: (4)

The semiclassical approximation consists of treating X and
P as numbers, and the effect of cavity relaxation is incor-
porated through a damping term proportional to �. We
solve for the steady state, treating X2 þ P2 as a constant
(thus we ignore harmonic generation), giving a nonlinear

equation for the amplitude A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ P2

p

A2 ¼ !2
c�

2

f!2
d � ½!c � �ðAÞ�2g2 þ �2!2

d

; (5)

with amplitude-dependent frequency shift �ðAÞ, given by

�ðAÞ ¼ �z

g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2ðA2 þ �zÞ þ �2

q : (6)

This reproduces for small driving the usual dispersive shift
�ð0Þ ’ �g2=� and for strong driving shows the saturation
effect limA!1�ðAÞ ¼ 0.
The solution of Eq. (5) is plotted in Fig. 2 for the same

parameters as in Fig. 1(b). For weak driving the system
response approaches the linear response of the dispersively

FIG. 1. Transmitted heterodyne amplitude jhaij as a function
of drive detuning (normalized by the dispersive shift � ¼ g2=�)
and drive amplitude (normalized by the amplitude to put n ¼ 1
photon in the cavity in linear response, �1 ¼ �=

ffiffiffi
2

p
). Dark colors

indicate larger amplitudes. (a) Experimental data [18], for a
device with cavity at 9.07 GHz and 4 transmon qubits at 7.0,
7.5, 8.0, 12.3 GHz. All qubits are initialized in their ground
state, and the signal is integrated for the first 400 ns ’ 4=� after
switching on the drive. (b) Numerical results for the JC model
of Eq. (3), with qubit fixed to the ground state and effective
parameters [20] �=2� ¼ �1:0 GHz, g=2� ¼ 0:2 GHz,
�=2� ¼ 0:001 GHz. Hilbert space is truncated at 10 000 exci-
tations (truncation artifacts are visible for the strongest drive),
and results are shown for time t ¼ 2:5=�.
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shifted cavity. Above the lower critical amplitude �C1 the
frequency response bifurcates, and the JC oscillator enters
a region of bistability. We denote by C1 the point at which
the bifurcation first appears. Dropping terms which are
small according to the hierarchy of Eq. (1), this point

occurs at �C1 ¼ ð��Þ3=23�3=4g�2, �C1 ¼ �ð0Þ � ffiffiffi
3

p
�=2,

writing the drive detuning as� ¼ !d �!c. The dip in the

heterodyne measurement of Fig. 1 appears within the
bifurcation region [Fig. 2(a)], indicating that this dip is
the result of ensemble averaging of the coherent hetero-
dyne amplitude in the region of classical bistability. In
Fig. 2(b) we see that the semiclassical and quantum simu-
lation yield the same response outside the region of bista-
bility. Within the region of bistability, quantum noise
causes switching [25] between the two semiclassical solu-
tions, one dim and one bright, with almost opposite phases.
Therefore, averaging over the amplitudes of an ensemble
of independent realizations gives rise to a destructive in-
terference effect at the frequency where the amplitudes
weighted by the switching rates are similar. An analytical
derivation of the dip in the steady-state amplitude for a
Kerr nonlinearity was given in Ref. [26]. In our case, both
the experiment and numerical integration are terminated at
a transient time of only a few cavity lifetimes, and we have
checked that the position of the dip in the numerical
response is shifted towards lower frequencies in the steady
state, consistent with the switching rate being slow com-
pared to the cavity decay rate. Other forms of single atom
bistability are known: single atom absorptive bistability
[27] exists in the weak coupling regime in the good-cavity
limit, very different from the present discussion; more
closely related is the single atom phase bistability of
spontaneous dressed state polarization [21] which concerns
the case where the atom and the cavity are in resonance
� ¼ 0, unlike our situation where the detuning � is the
largest frequency scale apart from the cavity frequency.
As the drive increases, and unlike the Kerr oscillator, the

frequency extent of the bistable region shrinks and even-

tually vanishes at the upper critical amplitude �C2 ¼ g=
ffiffiffi
2

p
.

In the effective theory the upper critical point C2 is located
very close to the bare cavity frequency. This indicates that
for driving at the bare cavity frequency there is no bista-
bility, but rather a finite region (a ‘‘step’’) in the vicinity of
the critical point [Fig. 2(c)], where the response becomes
strongly sensitive to the drive amplitude. The size of the
step can be shown to be a factor of r ¼ Abright=Adim ¼
2g2=�� in amplitude, and represents a very high gain

(dA=d� ¼ ffiffiffi
2

p
g=�3=2�1=2) in the strong-dispersive regime.

Above the step we see that the response approaches the
linear response of the bare cavity as N ’ Nbare.
From the semiclassical Eqs. (5) and (6) it follows

that for A � 1 the response of the system will have an
approximate symmetry of reflection with respect to the
bare cavity frequency Að�;�z¼þ1Þ�Að��;�z¼�1Þ.
Therefore the response at the bare cavity frequency will be
nearly independent of the state of the qubit. In order to
translate the high gain available at the step into a qubit
readout, it is necessary to break the symmetry of the
response of the system between the qubit ground and
excited states, such that the upper critical power �C2

will be qubit state dependent. In the JC model the
symmetry follows from the weak dependence of the
decoupled Hamiltonian ~H on the qubit state for high

FIG. 2 (color online). Solution to semiclassical Eq. (5), using
the same parameters as Fig. 1(b). (a) Amplitude response as a
function of drive frequency and amplitude. The region of bifur-
cation is indicated by the shaded area, and has corners at the
critical points C1, C2. The dashed lines indicate the boundaries
of the bistable region for a Kerr oscillator (Duffing oscillator),
constructed by making the power-series expansion of the
Hamiltonian to second order in N=Ncrit. The Kerr bistability
region matches the JC region in the vicinity of C1 but does not
exhibit a second critical point. (b) Cut through (a) for a drive of
6:3�1, showing the frequency dependence of the classical solu-
tions (solid blue line). For comparison, the response from the full
quantum simulation of Fig. 1(b) is also plotted (dashed red line)
for the same parameters. (c) Cut through (a) for driving at the
bare cavity frequency, showing the large gain available close to
C2 (the ‘‘step’’). Faint lines indicate linear response. (d) Same
cut as in (c), showing intracavity amplitude on a linear scale.
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photon occupation. However, the experimentally observed
state dependence may be explained by a symmetry break-
ing caused by the higher levels of the weakly anharmonic
transmon, or by the presence of more than one qubit; see
Fig. 3. In the case of the transmon, this asymmetry can be
understood in terms of a pairwise repulsion between the
jnþ 1; 1i and jn; 2i levels of the untransformed
Hamiltonian, as was discussed for the n ¼ 0 case in
Ref. [7]. Here, jn; ji denotes the state with n cavity ex-
citations and j transmon excitations. When designing a
readout scheme that employs such a diminishing anharmo-
nicity, the contrast of the readout is a product of both the
symmetry breaking and the characteristic nonlinear
response of the system near the critical point C2.
Experiments [4] were able to use this operating point to
provide a scheme for qubit readout, which is attractive both
because of the high fidelities achieved (approaching 90%,
significantly better than is typical for linear dispersive
readout in circuit QED [28,29]) and because it does not
require any auxiliary circuit elements in addition to the
cavity and the qubit.
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Note added.—Recently we became aware of a theoreti-

cal modeling of transmon readout by Boissonneault et al.
(preceding Letter) [30].
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FIG. 3 (color online). Symmetry breaking. State-dependent
transition frequency versus photon number (a) for the JC
model, parameters as in Figs. 1 and 2, (b) for the model ex-
tended to 2 qubits, �1=2� ¼ �1:0 GHz, �2=2� ¼ �2:0 GHz,
g1=2� ¼ g2=2� ¼ 0:25 GHz, and (c) for the model extended to
one transmon qubit [7], tuned below the cavity,!c=2� ¼ 7 GHz
EC=2� ¼ 0:2 GHz, EJ=2� ¼ 30 GHz, g=2� ¼ 0:29 GHz. (For
the given parameters, �01=2� ¼ �0:5 GHz, �12=2� ¼
�0:7 GHz, defining �ij ¼ Ej � Ei �!c, with Ei the energy

of the ith transmon level.) In all panels, the transition frequency
asymptotically returns to the bare cavity frequency. In (a) the
frequencies within the �z ¼ �1 manifolds are (nearly) symmet-
ric with respect to the bare cavity frequency. For (b), if the state
of one (‘‘spectator’’) qubit is held constant, then the frequencies
are asymmetric with respect to flipping the other (‘‘active’’)
qubit. In (c), the symmetry is also broken due the existence of
higher levels in the weakly anharmonic transmon.
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