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The leading relativistic and recoil corrections to bound state g factors of particles with arbitrary spin are

calculated. It is shown that these corrections are universal for any spin and depend only on the free particle

gyromagnetic ratios. To prove this universality we develop nonrelativistic quantum electrodynamics

(NRQED) for charged particles with an arbitrary spin. The coefficients in the NRQED Hamiltonian for

higher spin particles are determined only by the requirements of Lorentz invariance and local charge

conservation in the respective relativistic theory. For spin one charged particles, the NRQED Hamiltonian

follows from the renormalizable QED of the charged vector bosons. We show that universality of the

leading relativistic and recoil corrections can be explained with the help of the Bargmann-Michael-

Telegdi equation.
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Gyromagnetic ratios of particles in hydrogenlike bound
states have become in the last ten to fifteen years an active
field of experimental and theoretical research. The gyro-
magnetic ratio of a bound electron is proportional to the
ratio of the spin flip and cyclotron frequencies of a hydro-
genlike ion and to the electron-ion mass ratio. The experi-
mental uncertainties of the ratio of the spin flip and
cyclotron frequencies of the hydrogenlike carbon 12C5þ
and oxygen 16O7þ were reduced to 5–7 parts in 1010 (see
[1,2] and a review in [3]). The theoretical expression for
the bound state g factor was also greatly improved recently
(see, e.g., [4,5] and references in [3]), and the theoretical
uncertainty was reduced to 1.5–5.5 parts in 1011. As a result
measurements of the bound electron g factor became the
best source for precise values of the electron mass in
atomic units [3]. This bright picture is marred by the
discrepancy on the magnitude of the leading relativistic
and recoil corrections to bound state g factors existing in
the literature [6–8]. This discrepancy shifts the theoretical
value of the bound state g factors of the hydrogenlike
carbon 12C5þ and oxygen 16O7þ by about 2–3 parts in
1011. It will become even more phenomenologically rele-
vant if the proposed improvement [9] of the experimental
accuracy by 2 orders of magnitude is achieved. Theoreti-
cally, discrepancy between different results for the leading
relativistic and recoil corrections to bound state g factors
is connected with different treatments of the spin depen-
dence of these corrections. Below we derive an effective
nonrelativistic quantum electrodynamics (NRQED)
Hamiltonian for charged particles with arbitrary spins
and calculate the leading relativistic and recoil corrections
to the bound state g factors in loosely bound two-particle
systems. We show that these corrections are universal for
all spins; they do not depend on the magnitude of spin.

A loosely bound two-particle system is effectively non-
relativistic, with characteristic velocities of constituents of
order Z�. We are looking for the leading binding and recoil
corrections of order ðZ�Þ2. NRQED is a natural framework

for calculation of these corrections. We first consider lead-
ing nonrecoil corrections to the gyromagnetic ratio of order
ðZ�Þ2. To calculate all such corrections we need the
NRQED Lagrangian that includes all terms in nonrelativ-
istic expansion up to and including v2. We should also
include in the effective Lagrangian terms with the external
Coulomb field A0, since for such field heA0i � ðZ�Þ2. The
NRQED Lagrangian for the spin one-half case is well
known (see, e.g., [10]). The coefficients in the NRQED
Lagrangian for charged particles with an arbitrary spin
should be determined from comparison with the results
of the respective relativistic theory. The problem is that
renormalizable QED for charged particles with high spin
does not exist. The rules for calculation of all one-photon
interactions of charged particles with arbitrary spin were
constructed some time ago in [11,12]. This construction
uses only Lorentz invariance and local current conserva-
tion, and it should be valid for charged particles of arbitrary
spin. The interaction vertex in the approach of [11,12] is a
direct generalization of the ordinary spin one-half vertex

�� ¼ e
ðp1 þ p2Þ�

2m
Feðq2; �Þ � Fmðq2; �Þ

e���q
�

2m
; (1)

where q ¼ p2 � p1, ��� is the generalization of ordinary

spin one-half �u�, S� is a covariant spin four-vector, � ¼
ðq � SÞ2, and Feð0; 0Þ ¼ 1, Fmð0; 0Þ ¼ g=2. The wave func-
tions are spinors with dotted and undotted indices that are
symmetrized among themselves (for more details, see [11–
13]). The form of the vertex in Eq. (1) is uniquely fixed by
the requirements of Lorentz invariance, C, P, and charge
conservation. Charged particles with higher spins auto-
matically carry higher multipole moments that arise as
coefficients in expansion of the form factors Fe and Fm

over �. These intrinsic electric and magnetic multipole
moments are treated phenomenologically, and we do not
try to calculate them. The phenomenological approach to
multipole moments is an advantage for our purposes be-
cause we would like to describe how g factors of not
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necessarily electromagnetic origin (for example the g fac-
tor of a spin one deuteron) change in a loosely bound
electrodynamic system.

In the spin one-half case, the NRQED Lagrangian is
constructed from the gauge invariant operators D ¼ r�
ieA ¼ iðp� eAÞ, E, B, and S. For higher spin particles,

besides the spin operator, we should also include higher
irreducible intrinsic multipole moments as the building
blocks of the NRQED Lagrangian. Technically these mul-
tipole moments are polynomials in the components of the
spin operator that for higher spins do not reduce to nu-
merical tensors and operators linear in spin. The most gen-
eral NRQED Lagrangian has the form (compare with [10])

L ¼ �þ
�
ið@0 þ ieA0Þ þ D2

2m
þ D4

8m3
þ cF

eS �B
2m

þ cD
eðD �E�E �DÞ

8m2
þ cQ

eQijðDiEj � EiDjÞ
8m2

þ cS
ieS � ðD�E�E�DÞ

8m2
þ cW1

e½D2ðS � BÞ þ ðS �BÞD2�
8m3

þ cW2

�eDiðS �BÞDi

4m3

þ cp0p
e½ðS �DÞðB �DÞ þ ðD � BÞðS �DÞ�

8m3
þ . . .

�
�; (2)

whereQij¼SiSjþSjSi�ð2=3ÞS2�ij is proportional to the
electric quadrupole moment operator (Qij�0 for spin one-
half), and� is a (2Sþ 1)-component spinor field for a par-
ticle with spin s. We included in the Lagrangian in Eq. (2)
operators of dimensions not higher than four, except those
(like the terms with derivatives of magnetic field) that are
irrelevant for calculation of the leading recoil corrections.
Let us mention that gauge invariant bilinears in E and B
are of too high order to generate leading relativistic con-
tributions of order ðZ�Þ2 to bound state g factors.

The coefficients in Eq. (2) are usually determined from
comparison of the one- and two-photon scattering ampli-
tudes in NRQED and relativistic QED. Although some
terms in Eq. (2) are bilinear in A and E, all such terms
can be restored from one-photon terms due to gauge in-
variance. Then the one-photon relativistic vertex in Eq. (1)
is sufficient for calculation of all the coefficients in Eq. (2).
We calculated scattering amplitudes off an external elec-
tromagnetic field using the nonrelativistic Lagrangian in
Eq. (2) and using the relativistic one-photon vertex in
Eq. (1) at � ¼ 0. In the relativistic calculation we used
noncovariantly normalized particle spinors in the gen-
eralized standard representation, which is necessary for
consistency with the respective nonrelativistic results.
Diagrammatically this choice of spinors and representation
corresponds to the Foldy-Wouthuysen transformation (for
more details, see, e.g., [13]). After nonrelativistic expan-
sion, we compared results of the relativistic calculation
with the nonrelativistic ones and obtained values of all
constants in the Lagrangian in Eq. (2)

cF ¼ g

2
; cD ¼ ðg� 1Þ�

2

3
; cS ¼ g� 1;

cQ ¼ �2�ðg� 1Þ; cW1 ¼ gþ 2

4
;

cW2 ¼ g� 2

4
; cp0p ¼ g� 2

2
;

(3)

where �2 ¼ 4S, � ¼ 1=ð2S� 1Þ for integer spin and
�2 ¼ 4Sþ 1, � ¼ 1=ð2SÞ for half integer spin.
Dependence on the magnitude of charged particle spin
arose in the coefficients before the Darwin term and the

induced electric quadrupole interaction. The g factor in
Eq. (1) and (3) is the total gyromagnetic ratio of a free
nonrelativistic particle defined through the effective inter-
action Hamiltonian Hint ¼ �ge=ð2mÞB � S. If the charged
particle is subject only to electromagnetic interaction then
g reduces to a sum of the QED perturbation series. For spin
one-half the coefficients in Eq. (3) coincide with the re-
spective coefficients in [10], if the phenomenological g
factor is substituted into the expressions in [10] instead of
the perturbative g ¼ 2ð1þ �=2	Þ. As an independent test
of the effective Lagrangian in Eq. (2) we considered the
chargedW�-boson sector of the Glashow-Weinberg-Salam
electroweak theory amended by the anomalous magnetic
moment term. We derived the effective NRQED Lagrang-
ian for theW� bosons. This Lagrangian coincides with the
Lagrangian in Eq. (2) for spin one charged particles.
The NRQED coefficients in Eq. (3) are calculated ignor-

ing all relativistic loop diagrams and q2 and � dependence
of the form factors in Eq. (1). Both the loop diagrams in
relativistic QED and multipole expansion of the form
factors would generate further corrections to the coeffi-
cients in Eq. (3). However, we are interested only in
corrections to bound state g factors of order ðZ�Þ2 � v2.
The coefficients in the effective Lagrangian are calculated
comparing scattering amplitudes in relativistic and non-
relativistic theories. The counting of powers of the cou-
pling constants in the case of scattering amplitudes
calculated at a generic kinematical point is trivial. In
ordinary renormalizable spin one-half QED (as well as in
the renormalizable QED of spin oneW� vector bosons) all
diagrams, besides those that give contributions only to the
free particle g factors, generate corrections to the coeffi-
cients that are additionally suppressed by powers of Z�.
We expect the same effect in any reasonable theory for
higher spin particles. It is also obvious that accounting for
q2 and �, dependent terms in the form factors in Eq. (1)
generate terms suppressed by additional powers of Z�. We
do not need to consider two-photon Compton effect dia-
grams, since all terms in Eq. (2) bilinear in fields can be
restored from one-photon diagrams with the help of gauge
invariance. Any gauge-invariant terms connected with the
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two-photon diagrams are of too high order in Z� to con-
tribute to the leading relativistic corrections of order ðZ�Þ2.
Hence, the Lagrangian in Eq. (2) with the coefficients
from Eq. (3) is sufficient for calculation of the leading
relativistic corrections to the bound g factor in the non-
recoil case.

Our goal is also to calculate recoil corrections of order
ðZ�Þ2 that are linear and quadratic in the mass ratio. To this

end we need to construct an effective two-particle NRQED
Hamiltonian for a loosely bound electrodynamic system of
two particles. The interaction between two charged parti-
cles with accuracy up to ðZ�Þ2 is described by the one-
photon exchange which generates Coulomb and Breit in-
teractions. We calculated the one-photon potential for two
particles with arbitrary spins and magnetic moments and
obtained

Vintðp1;p2;rÞ¼e1e2

�
1

4	r
�ðg1�1Þ 1

8m2
1

�2
1

3
�ðrÞ�ðg1�1Þ3�1

	

rirjQð1Þ
ij

16m2
1r

5
�ðg2�1Þ 1

8m2
2

�2
2

3
�ðrÞ�ðg2�1Þ3�2

	

rirjQð2Þ
ij

16m2
2r

5

�rðr �p1Þ �p2

8	m1m2r
3
� p1 �p2

8	m1m2r
�ðg1�1Þ2S1 � ðr�p1Þ

16	m2
1r

3
þg1

2S1 � ðr�p2Þ
16	m1m2r

3
þðg2�1Þ2S2 � ðr�p2Þ

16	m2
2r

3

�g2
2S2 � ðr�p1Þ
16	m1m2r

3
þ g1g2
16	m1m2

�
S1 �S2

r3
�3fS1 �rgfS2 �rg

r5
�8	

3
S1 �S2�frg

��
; (4)

where r1ð2Þ, p1ð2Þ, S1ð2Þ, m1ð2Þ, g1ð2Þ, and Q½1ð2Þ�
ij are the

coordinate, momentum, spin, mass, gyromagnetic ratio,
and induced quadrupole moment of the first (second) par-
ticle, and r ¼ r1 � r2 is the relative coordinate.

This interaction is a natural generalization of the spin
one-half one-photon potential (see, e.g., [13]). The only
difference is that like in the Lagrangian in Eq. (2), the
coefficients in Eq. (4) before the Darwin terms depend on
the magnitude of particles’ spins, and new terms with
electric quadrupole moments arise. The interaction in
Eq. (4) is calculated in the absence of the external magnetic

field that is present in the g factor problem. This drawback
is easily repaired by the minimal substitution pi ! pi �
eiAi, Ai ¼ B� ri=2.
Combining the nonrecoil Lagrangian in Eq. (2) and the

one-photon potential (after minimal substitution) in Eq. (4)
we obtain a total effective two-particle NRQED
Hamiltonian for electromagnetically interacting particles
with arbitrary spins (we preserve only the terms relevant
for calculation of the g factor contributions)

H ¼ H1 þH2 þHint; (5)

where

H1 ¼ ðp1 � e1A1Þ2
2m1

� g1
e1
2m1

ðS1 �BÞ
�
1� p2

1

2m2
1

�
� ðg1 � 2Þ e1

2m1

ðS1 �BÞ p2
1

2m2
1

þ ðg1 � 2Þ e1
2m1

ðp1 � BÞðS1 � p1Þ
2m2

1

; (6)

Hint ¼ e1e2
4	r

þ e1e2

�
�ðg1 � 1Þ 2S1 � ðr� fp1 � e1A1gÞ

16	m2
1r

3
þ g1

2S1 � ðr� fp2 � e2A2gÞ
16	m1m2r

3

þ ðg2 � 1Þ 2S2 � ðr� fp2 � e2A2gÞ
16	m2

2r
3

� g2
2S2 � ðr� fp1 � e1A1gÞ

16	m1m2r
3

�
; (7)

and H2 is obtained from H1 by the substitution 1 ! 2.
The nonrelativistic effective two-particle Hamiltonian describes all (nonrecoil and recoil) leading relativistic corrections

to bound state g factors of each of the constituents. To calculate these corrections we need to separate effects of the bound
system motion as a whole from the internal effects. This task is not quite trivial because the center of mass variables do not
separate in the presence of external field. For the current case of a small magnetic field, a solution was suggested in [6,14].
The main idea is to insist that the center mass of a loosely bound system moves in an external field exactly in the same way
as a respective elementary particle with the same mass and charge. To satisfy this transparent physical requirement,
transition to the standard center of mass coordinates r ¼ r1 � r2, R ¼ �1r1 þ�2r2, �i ¼ mi=ðm1 þm2Þ should be

accompanied by the unitary transformation of the Hamiltonian H ! U�1HU, where U ¼ eiðe1�2�e2�1ÞAðRÞ�r. After this
transformation we extract from the transformed Hamiltonian terms that describe the spin interaction with an external field.
The final Hamiltonian for the first particle is

Hð1Þ
spin ¼ � e1

2m1

ðS1 �BÞ
�
g1

��
1� p2

2m2
1

�
� e2½e1 � ðe1 þ e2Þ�2

1�
24	m1r

� e2½e2 � ðe1 þ e2Þ�2
2�

12	m2r

�
þ ðg1 � 2Þ

�
p2

3m2
1

� e2½e1 � ðe1 þ e2Þ�2
1�

24	m1r

��
: (8)
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The Hamiltonian for the second constituent has the same
form. The leading binding correction to the g factor is
completely described by this Hamiltonian. We calculate
its matrix element with the help of the first order perturba-
tion theory between the Schrödinger-Coulomb wave func-
tions that are eigenfunctions of the unperturbed internal
Hamiltonian. After simple calculations we obtain the
bound state g factors with account of the leading relativ-
istic corrections of order ðZ�Þ2 for s states with the prin-
cipal quantum number n

gbound1 ¼ g1

��
1� �2

2e
2
1e

2
2

2f4	g2n2
�

þ�2e1e
2
2½e1 � ðe1 þ e2Þ�2

1�
6ð4	Þ2n2

þ�1e1e
2
2½e2 � ðe1 þ e2Þ�2

2�
3ð4	Þ2n2

�
þ ðg1 � 2Þ

�
�
�2

2e
2
1e

2
2

3ð4	Þ2n2 þ
�2e1e

2
2½e1 � ðe1 þ e2Þ�2

1�
6ð4	Þ2n2

�
;

(9)

gbound2 ¼ g2

��
1� �2

1e
2
1e

2
2

2f4	g2n2
�

þ�1e
2
1e2½e2 � ðe1 þ e2Þ�2

2�
6ð4	Þ2n2

þ�2e
2
1e2½e1 � ðe1 þ e2Þ�2

1�
3ð4	Þ2n2

�
þ ðg2 � 2Þ

�
�
�2

1e
2
1e

2
2

3ð4	Þ2n2 þ
�1e

2
1e2½e2 � ðe1 þ e2Þ�2

2�
6ð4	Þ2n2

�
:

(10)

These results resolve the discrepancy mentioned in
the Introduction in favor of the results in [6] (see also
[15]). The remarkable property of the expressions in
Eqs. (9) and (10) is that they are universal for particles of
any spin; they depend only on the g factors of free charged
particles, not on the magnitude of their spin. Technically
this happened because all terms in the effective two-
particle NRQED Hamiltonian in Eq. (5) relevant for cal-
culation of the leading relativistic corrections do not con-
tain spin-dependent coefficients �i, �

2
i . On the other hand,

analysis of dimensions and spin structure of all terms in the
NRQED Lagrangian in Eq. (2) leads to the conclusion that
terms with derivatives of electric fields do not generate
contributions to the leading relativistic corrections to the
bound state g factors. Omission of the field derivatives is
the basic assumption for validity of the Bargmann-Michel-
Telegdi (BMT) equation [13,16]. Hence, the approxima-
tion based on the BMT equation [6] is sufficient for calcu-

lation of the leading nonrecoil relativistic corrections to
bound state g factors. Then the leading relativistic correc-
tions are universal because the BMT equation is universal
for all spins. For purely electromagnetically interacting
particles, the free g factors in the BMT equation and in
Eqs. (9) and (10) are just sums of the QED perturbation
series. The BMT equation alone is insufficient for calcu-
lation of the leading relativistic recoil corrections and
should be amended by the one-photon exchange potential
in Eq. (7). This is a spin-orbit interaction; it does not
depend on magnitude of spins, and it produces universal
corrections to bound state g factors.
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