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We experimentally study a monolayer of vibrated disks with a built-in polar asymmetry which enables

them to move quasibalistically on a large persistence length. Alignment occurs during collisions as a result

of self-propulsion and hard core repulsion. Varying the amplitude of the vibration, we observe the onset of

large-scale collective motion and the existence of giant number fluctuations with a scaling exponent in

agreement with the predicted theoretical value.
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The recent surge of theoretical and numerical activity
about the collective properties of interacting self-propelled
particles has produced some striking results, even in the
simplest situations where local alignment, the only inter-
action, is competing with some noise: for instance, true
long-range order may arise in two dimensions, yielding
collectively-moving ordered phases endowed with generic
long-range correlations and anomalous ‘‘giant’’ number
fluctuations [1–4]. Despite the ubiquity of the collective
motion observed at all scales in more or less complex
situations ranging from the cooperative action of molecular
motors [5], the collective displacement of cells [6], to the
behavior of large animal, human, or robot groups [7], there
is, as of now, a lack of well-controlled experiments to
which this theoretical progress can be seriously confronted.
Indeed, working with large animal groups usually implies
that experiments are just observations, with the unavoid-
able difficulties to track trajectories and without much of a
control parameter to vary [8]. Similarly, experiments on
living cells (during development or wound healing or
within bacteria and amoeba colonies) often involve the
presence of external (chemical) gradients, genetic factors,
etc., which are hard to evaluate and known to have a
possibly strong influence. There is, hence, a crucial need
for model experiments using man-made objects with rather
well understood interactions. Swimmers [9] (from
chemically-powered nanorods to microscopic and macro-
scopic size mechanical devices) offer an interesting direc-
tion but the intrinsically long-range nature of
hydrodynamic interactions may appear as a unnecessary
complication. In this context, vibrated, dry, inert, ‘‘granu-
lar’’ particles appear as an attractive case where much
control can be exerted on the system, in the absence of
long-range interactions or unwanted additional features, so
that the onset of collective motion would then be a bona
fide spontaneous symmetry breaking phenomenon.

Various objects can be set in fairly regular motion on a
flat surface when vibrated properly: Yamada, Hondou, and
Sano were pioneers in demonstrating that an axisymmetric
polar object vibrated between two plates can move quasi-
ballistically [10]. At the collective level, Kudrolli’s group

studied the behavior of polar rods [11] and, more recently,
of short snakelike chains [12], but was unable to observe
genuine long-range orientational order, i.e., collective mo-
tion. A few other works have dealt with the collective
properties of shaken elongated apolar particles (a realiza-
tion of so-called ‘‘active nematics liquid crystals’’) [13],
but there no net collective motion is expected anyway.
Thus, to our knowledge, no well-controlled experiment

has produced a fluctuating, collectively moving ordered
phase of the type frequently observed in simple numerical
models. This may be just due to the scarcity of attempts,
but recent results might provide a deeper reason: it was
found that self-propelled particles with apolar (nematic)
alignment interactions cannot give rise to polar order, i.e.,
to collective motion [14]. (They may give rise, however, to
nematic order.) The few experiments mentioned above all
dealt with elongated objects (‘‘self-propelled rods’’), and
fall into this class because of their shape.
In this Letter, we report on experiments conducted on

vibrated disks with a built-in polar asymmetry which en-
ables them to move coherently [Fig. 1]. The isotropic shape
of the particles prevents strong nematic alignment. On the
contrary, we shall see that polar alignment is favored as an
effective result of hard core repulsion and polar motion.
Varying the amplitude of the vibration, we observe the
onset of large-scale collective motion and the existence
of giant number fluctuations with a scaling exponent in
agreement with the predicted theoretical value. We discuss
the difficulties in characterizing collective motion in a
finite domain and the possible key differences with the
simple models usually considered at the theoretical level.
Experiments with shaken granular particles are notori-

ously susceptible to systematic deviations from pure ver-
tical vibration [15]. We use a 110 mm thick truncated cone
of expanded polystyren sandwiched between two nylon
disks. The top disk (diameter 425 mm) is covered by a
glass plate on which lay the particles. The bottom one
(diameter 100 mm) is mounted on the slider of a stiff
square air-bearing (C40-03100-100254,IBSPE), which
provides virtually friction-free vertical motion and submi-
cron amplitude residual horizontal motion. The vertical
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alignment is controlled by set screws. The vibration is
produced with an electromagnetic servo-controlled shaker
(V455/6-PA1000L,LDS), the accelerometer for the control
being fixed at the bottom of the top vibrating disk, em-
bedded in the expanded polystyren. A 400 mm long brass
rod couples the air-bearing slider and the shaker. It is
flexible enough to compensate for the alignment mismatch,
but stiff enough to ensure mechanical coupling. The shaker
rests on a thick wooden plate ballasted with 460 kg of lead
bricks and isolated from the ground by rubber mats
(MUSTshock 100� 100� EP5, Musthane). We have
measured the mechanical response of the whole setup
and found no resonances in the window 70–130 Hz.
Here, we use a sinusoidal vibration of frequency f ¼
115 Hz and vary the relative acceleration to gravity � ¼
2�af2=g. The vibration amplitude a at a peak acceleration
of 1 g at this frequency is 25 �m. Using a triaxial accel-
erometer (356B18,PCB Electronics), we checked that the
horizontal to vertical ratio is lower than 10�2 and that the
spatial homogeneity of the vibration is better than 1%.

Our polar particles are micro-machined copper-
beryllium disks (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically oppo-
site positions [Fig. 1]. These two ‘‘legs,’’ which have
different mechanical response under vibration, endow the
particles with a polar axis which can be determined from
above thanks to a black spot located on their top. Under
proper vibration, they can be set in directed motion (see
below). Of total height h ¼ 2:0 mm, they are sandwiched
between two thick glass plates separated by a gap of H ¼
2:4 mm. We also used, to perform ‘‘null case experi-
ments,’’ plain rotationally invariant disks (same metal,
diameter, and height), hereafter called the ‘‘symmetric’’
particles. We laterally confined the particles in a flower-
shaped arena of internal diameter D ¼ 160 mm [Fig. 1].

The petals avoid the stagnation and accumulation of par-
ticles along the boundaries as reported, for instance, in [11]
by ‘‘reinjecting’’ them into the bulk. A CCD camera with a
spatial resolution of 1728� 1728 pixels and standard
tracking software is used to capture the motion of the
particles at a frame rate of 20 Hz. In the following, the
unit of time is set to be the period of vibration and the unit
length is the particle diameter. Within these units, the
resolution on the position ~r of the particles is better than
0.1, that on the orientation ~n is of the order of 0.05 rad and
the lag separating two images is �0 ¼ 5:75. Measuring the
long-time averaged spatial density map (for various num-
bers of particles), we find that this density field slightly
increases near the boundaries, but is constant to a few
percent in a region of interest (ROI) of diameter 20d.
This provides an additional check of the spatial homoge-
neity of our setup.
We first performed experiments with 50 particles, i.e., at

a surface fraction small enough so that collisions are rare
and the individual dynamics can be investigated. For large
acceleration, the polar particles describe random-walk-like
trajectories with short persistence length. Decreasing �,
they show more and more directed motion, and the persis-
tence length quickly exceeds the system size. This is in
contrast with the symmetric particles which retain the same
shortly correlated individual walk dynamics for all � val-
ues [Figs. 2(a) and 2(b)].
More precisely, individual velocities ~viðtÞ�

½~riðtþ�0Þ� ~riðtÞ�=�0 measured within the ROI have a
well-defined most probable or mean value vtyp ’ 0:025
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FIG. 2 (color online). Individual dynamics for � ¼ 2:7.
(a) Typical portions of polar particles trajectories inside the
ROI. Black and grey (red) arrows indicate ~vt

i and ~nti at selected
times. The domain area is about 15� 15d. (b) The same for
symmetric particles. (c) Probability distribution function (PDF)
with counterpropagating waves with a common linear polariza-
tion (lin-lin) of �, the angle between ~vt

i and ~nti. (d) Variation of
angular diffusion coefficient D� with �.

FIG. 1 (color online). Collective motion of self-propelled
disks. Bottom left panel: a sketch of our polar particles. Main
panel: a snapshot of an ordered regime observed in our flower-
shape domain. The dark gray reveals the local alignment be-
tween particles {both perfect alignment [light grey (red)] and
pergect antialignment [dark grey (blue)]}. The intrinsic polarity
of the particles is indicated by the black arrows.
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which changes by only 6% over the interval �2½2:7;3:7�
(not shown). For smaller values of � the velocity decreases
suddenly and the particles come to an almost complete stop
around � ¼ 2:4. The local displacements of our polar
particles are overwhelmingly taking place along ~niðtÞ, their
instantaneous polarity [Fig. 2(c)]. The distribution of the
angle �iðt; tþ �0Þ by which they turn during an interval �0
[defined using the polarity ~niðtÞ] is an exponential distri-
bution of zero-mean and variance 2D�=�0. The angular
diffusion constant D� decreases fast and linearly for � 2
½2:7; 3:7� [Fig. 2(d)]. In contrast again, D� is about 1 order
of magnitude larger for our isotropic particles, and varies
little with � (not shown). A persistence length can then be
defined as � ¼ 1

2�
2vtyp=D� (i.e., the length traveled over

the time needed to turn by �, assuming a constant speed
vtyp). Its typical value decreases from above 100 for � ¼
2:7 to around 20 for � ¼ 3:7 whereas it stays around 1 for
the symmetric particles.

We now turn to the collective dynamics of our polar
particles. As seen above, the relative acceleration � has a
strong influence on their individual dynamics, controlling
the persistence length of their trajectories via the angular
diffusion constant D�. During collisions, they typically
bounce against each other several times, yielding, on av-
erage, some degree of polar alignment [Fig. 3]. All this is
reminiscent of Vicsek-like models, for which one of the
main control parameters is the strength of the angular noise
competing with the alignment interaction [3,4]. Thus � is
not only an easy control parameter, but also a natural one,
which we use in the following. The surface fraction � of
particles is another natural control parameter in collective
motion and granular media studies, but it is somewhat
more tedious to vary, and, more importantly, one should
avoid to deal with too few, respectively, too many, particles
in order to prevent loss of statistical quality, respectively,
jamming effects. Below, we present results obtained with
N ¼ 890 particles, which gives a surface fraction� ’ 0:38
in the ROI where an average of 160 particles (slightly
dependent on �) is found. Similar results were obtained
at nearby densities. To characterize orientational order, we
use the modulus of the average velocity-defined polarity
�ðtÞ ¼ jh ~uiðtÞij where ~uiðtÞ is the unit vector along
~viðtÞ and the average is overall particles inside the ROI at
time t [16].

At low � values, for which the directed motion of our
polar particles is most persistent, we observe spectacular
large-scale collective motion, with jets and swirls as large
as the system size [Fig. 1 and [17]]. Of course, because our
boundary conditions are not periodic, the collective motion
observed is not sustained at all times. Large moving clus-
ters form, then breakdown, etc., As a result, the times series
of the order parameter� presents strong variations, but can
take a rather well-defined order one value for long periods
of time [Fig. 4(a)]. At high � values (large noise) no large-
scale ordering is found. Decreasing �, the PDF of �
becomes wider and wider, with a mean and a most prob-

able value increasing sharply [Figs. 4(b) and 4(c)]. Note
that the most probable value corresponds, at small �, to the
plateau value found in time series of �. Thus, we observe
the clear emergence of long-range orientational order over
the range of usable � values. In contrast, the same experi-
ments realized with our symmetric particles do not give
rise to any collective motion [Fig. 4(c)], which ultimately
indicates that our observations with polar particles are not
due to some residual large-scale component of our shaking
apparatus [15].
Unfortunately, we could not observe the saturation of the

order parameter expected deep in the ordered phase, be-
cause the ‘‘self-propulsion’’ of our polar particles deterio-
rates for � & 2:7. Nevertheless, large � values were
observed, signalling that our lowest usable � values are
already in the ordered phase, albeit not quite surely out of
the critical-transitional region. We thus investigate the
emergence of the so-called ‘‘giant number fluctuations’’
(GNF) which have been shown theoretically and numeri-
cally to be a landmark of orientationally ordered phases for
active particles [1,2]. To this aim, we recorded, along time,
the number nðtÞ of particles present in boxes of various
sizes located within the ROI. GNF are characterized by the

FIG. 3 (color online). Trajectories of two particles ‘‘during’’ a
collision: they first collide almost head on, but repeated contacts
[all along the grey (red) double-headed arrow] finally leave them
almost aligned, despite their isotropic shape.
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FIG. 4 (color online). Collective dynamics. (a) Time series of
order parameter � at � ¼ 2:8. (b) PDF (lin-lin) of �ðtÞ at
various � values. (c) h�i vs � for polar and symmetric particles.
(d) �n vs n at � ¼ 2:8.

PRL 105, 098001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

27 AUGUST 2010

098001-3



fact that the variance �n of this number scales faster than
the mean n. This is indeed what we find: over a range of
scales, �n grows like n� with �� 1:45� 0:05. For larger
scales, one feels the finite system size and �n levels off. In
fact, according to the prediction derived from the work of
Tu and Toner [18] and confirmed in simulations [4], this
number should be 1.6. Thus our finding is quite consistent
with the predicted value, all the more so since � is ex-
pected to converge from below as the system size increases
[2]. Although this will require confirmation by experiments
performed in larger dishes, this result constitutes the first
experimental evidence for GNF in collections of polar
active particles [19].

To summarize, we have shown that shaken particles with
a polarity not related to their shape can exhibit collective
motion on scales or the order of the domain in which they
evolve. In the most ordered regimes reachable, we re-
corded giant number fluctuations with a scaling exponent
consistent with that of polar active phases.

That we observe dominant polar order is worth discus-
sing. On one hand it was recently shown that if their
alignment interaction is nematic, polar particles cannot
order polarly and only nematic order arises [14].
However self-propulsion enhances polar correlations and
this nematic order is made of polar packets [20], which
could dominate the global order in a small domain such as
our ROI. On the other hand, preliminary studies of the
somewhat unusual collisions which often consist of series
of repeated shocks [Fig. 3] reveal a systematic bias in favor
of polar alignment in line with [21]. Whether such a bias
could drive the transition towards polar order is still theo-
retically an open question. It is not clear at this point in
what class our system falls.

In Vicsek-style models (and their continuous descrip-
tions) no GNF proper exist near the transition, where high-
order, high-density bands emerge [4,22]. Here, we found
GNF in our most-ordered regimes, with approximately the
expected exponent. But it is impossible, at this stage, to
disentangle fluctuations due to the proximity of the tran-
sition, those due to the frustration induced by our bounda-
ries (which would break bands), and ‘‘genuine’’ GNF.
Also, further complications could arise from the influence
of the near-jammed clusters forming when order sets in.
From that perspective, our results pave the way for the
study of jamming in active matter.

Thus performing experiments in larger domains and
investigating deeper into the ordered phase is of utmost
importance. Very recent results obtained in a twice larger
system indicate an anomalous density fluctuation exponent
even closer to the theoretical value. More work is under
progress.
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