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We study the issue of the spin-chirality decoupling or coupling in the ordering of the Heisenberg spin

glass by performing large-scale Monte Carlo simulations on a one-dimensional Heisenberg spin-glass

model with a long-range power-law interaction up to large system sizes. We find that the spin-chirality

decoupling occurs for an intermediate range of the power-law exponent. Implications to the corresponding

d-dimensional short-range model are discussed.
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The issue of spin-glass (SG) ordering has been studied
quite extensively for years, and continues to have an im-
pact on surrounding areas [1–3]. Nevertheless, the true
nature of the ordering of SG magnets still remains elusive
and controversial. Since the magnetic interaction in most
of real SG materials is known to be nearly isotropic, they
should be described as a first approximation by the iso-
tropic Heisenberg model. Recently, a consensus has ap-
peared among various numerical works that the isotropic
Heisenberg SG in three dimensions (3D) exhibits a finite-
temperature transition, while the nature of the transition
still remains controversial [4–10].

It has been suggested in Ref. [4] that the model might
exhibit an intriguing ‘‘spin-chirality decoupling’’ phe-
nomenon; i.e., the chirality exhibits glass order at a
temperature higher than the standard SG order, TCG >
TSG [5–7]. Chirality is a multispin variable representing
the handedness of the noncollinear or noncoplanar spin
structures induced by frustration. By contrast, Refs. [8–10]
claim that the 3D Heisenberg SG does not exhibit such a
spin-chirality decoupling, only a single transition which is
simultaneously SG and chiral glass (CG).

To get deeper insight into the behavior in physical
dimension d ¼ 3, it is often useful to study the phenomena
by extending the dimensionality to general d dimensions.
In the limit of low d, the short-range (SR) Heisenberg SG
exhibits only a T ¼ 0 transition in d ¼ 1. In d ¼ 2, recent
calculations suggest that the vector SG model, either the
three-component Heisenberg SG [11] or the two-
component XY SG [12], exhibits a T ¼ 0 transition accom-
panied by the spin-chirality decoupling, i.e., the CG
correlation-length exponent �CG is greater than the SG
correlation-length exponent �SG. The spin-chirality decou-
pling associated with a finite-temperature transition
could occur, if any, in d � 3. In the opposite limit of
high d, the SR Heisenberg SG model in infinite dimensions
d ! 1 reduces to the mean-field (MF) model, i.e., the
Sherrington-Kirkpatrick (SK) model. The Heisenberg SK
model is known to exhibit only a single finite-temperature
SG transition, with no spin-chirality decoupling. In high

but finite d, Monte Carlo (MC) result of Ref. [13] sug-
gested that the spin-chirality decoupling did not occur in
d ¼ 5, but might occur in d ¼ 4. Reflecting an intrinsic
difficulty in thermalizing large systems in high dimensions,
however, the true situation still remains largely unclear.
In the present Letter, we attack the issue of the spin-

chirality coupling or decoupling in the Heisenberg SG
from a different perspective. Namely, we study a different
type of Heisenberg SGmodel, i.e., the one-dimensional (1D)
Heisenberg SG with a long-range (LR) power-law interac-
tion proportional to 1=r� (r is the spin distance). In the limit
of sufficiently large � ! 1, the model reduces to the stan-
dard d ¼ 1model with a SR interaction. In the opposite limit
of � ! 0, the model reduces to an infinite-range model, i.e.,
the SKmodel corresponding to d ¼ 1. Hence, varying� of
the 1D LR model might be analogous to varying d in the SR
model. Indeed, this correspondence was supported by recent
studies by Katzgraber and Young [14] and by Leuzzi et al.
[15] for the Ising SG. These authors have suggested more
detailed correspondence between d of the SR model and �
of the 1D LR model, e.g., (i) the upper-critical dimension
d ¼ 6 corresponds to� ¼ 2=3, (ii) the lower critical dimen-
sion, which lies between d ¼ 2 and 3, corresponds to� ¼ 1,
and (iii) d ¼ 3 corresponds to �� 0:9.
Advantages of studying such 1D models might be three-

fold. First, systems of large linear size L, never available in
high dimensions, can be studied (up to L ¼ 4096 in the
present calculation). Second, one can continuously change
and even fine-tune the parameter � playing the role of
effective ‘‘dimensionality’’, while it is impossible to con-
tinuously change the real dimensionality d in the SR
model. Hence, by studying the properties of the 1D model
with varying �, one might get an overall picture concern-
ing how the ‘‘coupling vs decoupling’’ behavior depends
on the effective dimensionality. Third, certain analytical
results based on the renormalization-group (RG) calcula-
tions are available in 1D, which might be utilized in
interpreting the numerical data.
Indeed, RG calculations, though did not take account of

the possibility of the spin-chirality decoupling, suggested
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that the model exhibited a rich ordering behavior with
varying � [16,17]. For � � 2=3, the Gaussian fixed point
is stable and the model exhibited a finite-temperature SG
transition of the MF type. For 2=3<�< 1, a nontrivial
LR fixed point becomes stable leading to a finite-
temperature SG transition characterized by the non-MF
exponents. In particular, the critical-point-decay exponent
is determined solely by the power describing the spin-spin
interaction, and is given by �SG ¼ 3� 2� [16,17]. For
� � 1, the SG transition occurs only at zero temperature
with �SG ¼ 1.

Meanwhile, it remains to be seen how the spin-chirality
decoupling arises in this 1D model with varying �. Since
the MF Heisenberg SK model does not show the spin-
chirality decoupling, the spin-chirality decoupling associ-
ated with a finite-temperature transition should be realized,
if any, only in the intermediate range of �, near or below
� ¼ 1. Thus, we study here both the spin and the chiral
orderings of the model by large-scale MC simulations,
varying � in the range 0:7 � � � 1:1, which spans the
non-MF regime. Our numerical results indicate that the
model exhibits the spin-chirality decoupling in the range
0:8 & � & 1:1, while the usual spin-chirality coupling
behavior occurs for � & 0:8.

The Hamiltonian is the 1D classical Heisenberg model
with a random LR power-law interaction Jij,

H ¼ �X

hiji
Jij ~Si � ~Sj; (1)

where ~Si ¼ ðSxi ; Syi ; Szi Þ is a three-component unit vector at
the ith site, and the hiji sum is taken over all spin pairs on
the lattice once. The interaction Jij decays with a geomet-

ric distance rij as a power law,

Jij ¼ C
�ij
r�ij

; C ¼ p L
P

hiji r�2�
ij

; (2)

where �ij is an independent random Gaussian variable with

zero mean and standard deviation unity. Periodic boundary
condition is applied by placing L spins on a ring. Then, the
geometric distance between the spins at i and j is given by
rij ¼ ðL=�Þ sinð�ji� jj=LÞ.

We perform extensive MC simulations for various val-
ues of � in the range 0:7 � � � 1:1 (a preliminary report
for � ¼ 1:1 was presented in Ref. [18]). We shall show
below mainly the results for � ¼ 0:9 and 1.0. The lattice
sizes studied are L ¼ 128, 256, 512, 1024, 2048, and also
4096 for some�. Sample average is take over 896 (for L �
2048) and 256 (L ¼ 4096) independent bond realizations
for � ¼ 0:9, while 896 (L � 1024) and 256 (L ¼ 2048)
for � ¼ 1:0. We use a single-spin-flip heat bath and an
over-relaxation method combined with the temperature-
exchange technique. The over-relaxation sweeps are re-
peated 5 times per every heat-bath sweep, which is set as
our unit MC step. Equilibration is checked by monitoring:
(i) All the ‘‘replicas’’ travel back and forth many times
(typically more than 10 times) along the temperature axis

during the temperature-exchange process between maxi-
mum and minimum temperature points, whereas the re-
laxation due to single-spin flip is fast enough (both chiral
and spin autocorrelation times about 20 MC steps or less)
at the maximum temperature: (ii) All the measured quan-
tities converge to stable values [7].
The local chirality at the ith site �i is defined for three

neighboring spins by the scalar �i ¼ ~Siþ1 � ð ~Si � ~Si�1Þ.
We simulate two independent copies of systems with iden-
tical interaction sets Jij subject to mutually different

random-number sequences and spin initial conditions,
and measure k-dependent overlaps both for the spin and
for the chirality. The k-dependent chiral overlap, q�ðkÞ, is
defined as an overlap variable between the two replicas (1)
and (2) by

q�ðkÞ ¼ 1

N

XN

i¼1

�ð1Þ
i �ð2Þ

i eikri : (3)

From the chiral overlap, we calculate the CG susceptibility
�CG via the second moment of its k ¼ 0 component,
�CG ¼ L½hjq�ð0Þj2i�, where h� � �i denotes a thermal aver-

age and ½� � �� an average over the bond disorder.
Essentially the same definitions also apply to the spin
except that an appropriate overlap becomes a tensor in
spin space [7]. Finite-size correlation length of the 1D
LR model is then defined by

� ¼ 1

2 sinðkm=2Þ
� ½hjqð0Þj2i�
½hjqðkmÞj2i�

� 1

�
1=ð2��1Þ

; (4)

for both SG and CG, where km ¼ 2�
L [14,15].

We begin with the case of � ¼ 0:9 in the midst of the
non-MF regime. In Fig. 1, we show the correlation-length
ratios for the chirality �CG=L (a), and for the spin �SG=L (b).
These quantities are dimensionless so that the data of differ-
ent L should cross or merge at the expected transition point
asymptotically for large L. For smaller sizes, the crossing
temperatures TcrossðLÞ of the spin �SG=L and of the chiral
�CG=L are almost common, exhibiting only a weak L
dependence. For larger sizes, TcrossðLÞ of the spin �SG=L
shift down to lower temperatures, while those of the chiral
�CG=L remain to be nearly L independent, deviating from
TcrossðLÞ of the spin �SG=L. In Fig. 2(a), we plot TcrossðLÞ of
the �CG=L curves between of the sizes L and 2L as a
function 1=L, together with the corresponding ones of the
�SG=L curves.
While the SG and CG susceptibilities are dimensionful

quantities, they can be made dimensionless by dividing
them by L2��, where � is a critical-point-decay exponent.
Generally, the exponent � is not known in advance, but in
the case of the present LR interaction, the SG exponent �SG

is given by �SG ¼ 3� 2�. Making use of this property, we
plot in the inset of Fig. 1(b) the temperature dependence of
the SG susceptibility ratio �SG=L

2��SG where 2� �SG ¼
2�� 1 ¼ 0:8. As can be seen from the figure, the data of
different L exhibit a crossing behavior as expected for the
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dimensionless quantity. For the CG susceptibility ratio, this
type of analysis has only restricted utility because of the
lack of our knowledge of the chiral �CG value.

In order to estimate the bulk CG and SG transition
temperatures quantitatively, we need to extrapolate
TcrossðLÞ to L ¼ 1. Such an extrapolation is done here
on the basis of the relation, TcrossðLÞ � Tcrossð1Þ � cL��

with � ¼ ��1 þ!, where � and ! are the correlation
length and the leading correction-to-scaling exponents,
respectively, while c is a constant. For the SG, we perform
a combined fit of TcrossðLÞ of both �SG=L and of

�SG=L
2��SG , where a common Tcrossð1Þ and � are as-

sumed. The standard �2 analysis then yields TSG ¼
0:086	 0:003 and � ¼ 0:44	 0:07, with �2=DOF ¼
1:24 and the associated fitting probability Q ¼ 0:29. The
smallness of the obtained error bar of TSG is due to the fact
that the two independent TcrossðLÞ are used in the fit, each
approaching TSG either from above or below. For the CG,
we have TcrossðLÞ of �CG=L only, which yields TCG ¼
0:105	 0:003 and � ¼ 1:2	 1:4 (�2=DOF ¼ 1:14 and
Q ¼ 0:32). The smallness of the error bar of TCG is due
to the fact that TcrossðLÞ of �CG=L exhibits a nearly
L-independent behavior. Hence, TCG turns out to be higher
than TSG by about 20%, suggesting that the spin-chirality
decoupling occurs for � ¼ 0:9.
On decreasing � from � ¼ 0:9, one tends to approach

the spin-chirality coupling regime. Indeed, for � ¼ 0:8,
we obtained via similar analyses (the data not shown here)
TCG ¼ 0:158	 0:008 and TSG ¼ 0:159	 0:002, which
suggests that the spin and the chirality might order simul-
taneously at � ¼ 0:8.
By contrast, on increasing � from � ¼ 0:9, ones

approaches the TSG ¼ 0 regime, with the upper-critical
�, � ¼ 1. In Fig. 3, we show the correlation-length ratios
�CG=L (a) and �SG=L (b) for� ¼ 1:0, together with the SG
susceptibility ratio �SG=L

2��SG . In contrast the � ¼ 0:9
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FIG. 2 (color online). The (inverse) size dependence of the
crossing temperatures of �CG=L, �SG=L, and �SG=L

2��SG for the
case of � ¼ 0:9 (a), and of � ¼ 1:0 (b). Lines represent power-
law fits with an exception of the SG data for � ¼ 1:0, which is a
logarithmic fit. See the text for details.
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FIG. 1 (color online). The correlation-length ratio versus the
temperature for the chirality (a), and for the spin (b), for � ¼
0:9. The arrows indicate the bulk chiral-glass and spin-glass
transition points. The inset of Fig. (b) represents the temperature
dependence of the spin-glass susceptibility ratio, �SG=L

2��SG

with 2� �SG ¼ 2�� 1 ¼ 2� 0:9� 1 ¼ 0:8.
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of the spin-glass susceptibility ratio, �SG=L
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case, �SG=L
2��SG does not show crossing in the investi-

gated T and L range. In Fig. 2(b), TcrossðLÞ of �CG=L and of
�SG=L as well as those of �SG=L

2��SG are plotted as a
function of 1=L. For the chirality, a fit of TcrossðLÞ of
�CG=L yields TCG ¼ 0:045þ0:019

�0:027 and �CG ¼ 0:34	 0:34
(�2=DOF ¼ 0:15 and Q ¼ 0:70). Hence, TCG is likely to
be nonzero at � ¼ 1:0. For the spin, the decreasing ten-
dency of TcrossðLÞ with L becomes pronounced. In fact, a
power-law fit becomes unstable here, leading to an indef-
initely negative TSG value. Rather, a logarithmic fit of the
form TcrossðLÞ ¼ bðlnLþ cÞ��, expected for the T ¼ 0
transition at the upper-critical �, yields an acceptable fit
with � ’ 2:1 (�2=DOF ¼ 3:88 and Q ¼ 0:0044) as shown
in Fig. 2(b). This observation supports the T ¼ 0 SG
transition theoretically expected.

Similar analyses are made for other values of �
including � ¼ 0:7, 0.8, 0.85, 0.95, 1.1. We then find the
decoupling behavior with TCG > TSG for � ¼ 0:85, 0.95,
and the coupling behavior with TCG ’ TSG for� ¼ 0:7, 0.8
(details will be reported elsewhere). The obtained results
are summarized in the �� T phase diagram in Fig. 4.
We tend to have larger error bars toward the upper-critical
� ¼ 1, because we have only one kind of TcrossðLÞ and
the data exhibit significant downward curvature there.
The spin-chirality decoupling occurs in the range
0:8 & � & 1:1. By contrast, the standard spin-chirality
coupling behavior TSG ¼ TCG is realized for � & 0:8.
The para-CG phase boundary might go beyond � ¼ 1,
touching the T axis separately from the CG-SG phase
boundary.

Although the correspondence between � of the 1D LR
model and d of the SRmodel is by no means exact, it might
be interesting to deduce on the basis of Fig. 4 the behavior
of the d-dimensional Heisenberg SG with SR interactions.
As mentioned, recent theoretical analyses suggest that the

physical dimension d ¼ 3 corresponds to � slightly
smaller than unity. Hence, our present conclusion that the
spin-chirality decoupling occurs in the relevant range of �,
0:8 & � & 1:1, gives indirect support to the spin-chirality
decoupling occurring in d ¼ 3 in the SR Heisenberg SG.
Anyway, the phase diagram of Fig. 4 serves to grasp an
overall ordering behavior of the Heisenberg SG from a
wider perspective.
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