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We compute the quantum correlation [quantum discord (QD)] and the entanglement (EOF) between

nearest-neighbor qubits (spin-1=2) in an infinite chain described by the Heisenberg model (XXZ

Hamiltonian) at finite temperatures. The chain is in the thermodynamic limit and thermalized with a

reservoir at temperature T (canonical ensemble). We show that QD, in contrast to EOF and other

thermodynamic quantities, spotlight the critical points associated with quantum phase transitions (QPT)

for this model even at finite T. This remarkable property of QD may have important implications for

experimental characterization of QPTs when one is unable to reach temperatures below which a QPT can

be seen.
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Quantum phase transition (QPT) is a purely quantum
process [1] occurring at absolute zero temperature (T ¼ 0),
where no thermal fluctuations exist and hence no classical
phase transition is allowed to occur. QPT is caused by
changing the system’s Hamiltonian, such as an external
magnetic field or the coupling constant. These quantities
are generally known as the tuning parameter. As one
changes the Hamiltonian one may reach a special point
(critical point) where the ground state of the system suffers
an abrupt change mapped to a macroscopic change in the
system’s properties. This change of phase is solely due to
quantum fluctuations, which exist at T ¼ 0 due to the
Heisenberg uncertainty principle. This whole process is
called QPT. The paramagnetic-ferromagnetic transition in
some metals [2], the superconductor-insulator transition
[3], and superfluid-Mott insulator transition [4] are remark-
able examples of this sort of phase transition.

In principle QPTs occur at T ¼ 0, which is unattainable
experimentally due to the third law of thermodynamics.
Hence, one must work at very small T, as close as possible
to the absolute zero, in order to detect a QPT. More
precisely, one needs to work at regimes in which thermal
fluctuations are insufficient to drive the system from its
ground to excited states. In this scenario quantum fluctua-
tions dominate and one is able to measure a QPT.

So far the theoretical tools available to determine the
critical points (CP) for a given Hamiltonian assume T ¼ 0.
For spin chains, for instance, the CPs are determined
studying, as one varies the tuning parameter, the behavior
of either its magnetization, or bipartite [5] and multipartite
[6] entanglement, or its quantum correlation (QC) [7]. By
investigating the extremal values of these quantities as well
as the behavior of their first and second order derivatives
one is able to spotlight the CP. However, the T ¼ 0 as-
sumption limits a direct connection between these theo-
retical ‘‘CP detectors’’ and experiment. Indeed, if thermal
fluctuations are not small enough excited states become

relevant and the tools developed so far cannot be employed
to clearly indicate the CP.
In this Letter we remove this limitation and present a

theoretical tool that is able to clearly detect CPs for QPTs
at finite T. We show that the behavior of strictly QCs [8] at
finite T, as given by the thermal quantum discord (TQD)
[9], unambiguously detects CPs for QPTs that could only
be seen, using previous methods, at T ¼ 0 [7]. This re-
markable property of TQD, on one hand, is an important
tool that can be readily applied to reduce the experimental
demands to determine CPs for QPTs, or even allow such a
detection for those systems where today’s technology
makes it virtually impossible to achieve the necessary T
below which quantum fluctuations dominate. One the other
hand, this characteristic of TQD shows that QPTs have a
decisive influence on a system’s physical property not only
for small T but also above T where quantum fluctuations no
longer dominate.
In order to show that TQD detects a QPT at finite T, we

study the anisotropic spin-1=2 Heisenberg chain (XXZ) in
the thermodynamic limit. We assume the infinite chain to
be in thermal equilibrium with a reservoir at temperature
T; i.e., its density matrix is described by the canonical
ensemble. Tracing out all spins but the two nearest neigh-
bors we get their reduced density matrix as a function of
two-point correlation functions, which are evaluated by
solving a set of nonlinear integral equations (NLIE)
[10,11]. The two-qubit density matrix allows us to compute
TQD and investigate its properties for T > 0 as we change
the system’s Hamiltonian. We show that TQD is maximal
and its first-order derivative with respect to the tuning
parameter is discontinuous at the quantum CP, not only
at T ¼ 0 [7], but also at T > 0. This behavior is robust
enough to be seen for high T. Furthermore, we have also
computed the entropy, magnetization, magnetic suscepti-
bility, and specific heat, for the whole chain, and two-site
correlations between the two nearest-neighbor spins as
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well as their entanglement. We show that none of these
quantities detect unambiguously the CP for T > 0. We also
discuss why TQD possesses such a unique behavior in
contrast to another quantity, namely, the entanglement
between the two nearest neighbors.

The XXZ Hamiltonian can be written as

H ¼ J
XL

j¼1

ð�x
j�

x
jþ1 þ �y

j�
y
jþ1 þ��z

j�
z
jþ1Þ; (1)

where periodic boundary conditions are assumed and � is
the anisotropy parameter. Here L ! 1 and �x

j , �
y
j , and �

z
j

are the usual Pauli matrices acting on the j-th qubit.
Throughout this Letter @ ¼ 1 and J ¼ 1 unless noted
otherwise. At T ¼ 0 the XXZ model has two CPs [12].
At � ¼ 1 we have a continuous phase transition and at
� ¼ �1 we have a first-order transition.

The density matrix for a system in equilibrium with a
thermal reservoir is � ¼ expð��HÞ=Z, where � ¼ 1=kT,
Z ¼ Trfexpð��HÞg is the partition function, and the
Boltzmann’s constant k is set to unity. The nearest-
neighbor two-qubit state is obtained by tracing all but the
first two spins, �12 ¼ TrL�2f�g. Because of the translation
invariance and Uð1Þ invariance (½H;

P
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j� ¼ 0) of (1),
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These two-point correlation functions can be written in its
simplest form in terms of derivatives of the free energy f ¼
ð�1=�ÞlimL!1ðlnZÞ=L,
h�z

j�
z
jþ1i ¼ @�f=J; h�x

j�
x
jþ1i ¼ ðu� �@�fÞ=2J;

(3)

with u ¼ @�ð�fÞ the internal energy. In order to determine

the free energy in the thermodynamic limit and at finite T
one has to solve a suitable set of NLIE [10,11,13].

Now we can use (2) in order to show that the entangle-
ment, as measured by the entanglement of formation
(EOF) [14], is EoF ¼ �gðfðCÞÞ� gð1� fðCÞÞ, with

fðCÞ ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
Þ=2, gðfÞ ¼ flog2ðfÞ, and

C ¼ Maxf0; jh�x
1�

x
2ij � j1þ h�z

1�
z
2ij=2g (4)

the concurrence, an entanglement monotone. EOF quanti-
fies a class of QCs that cannot be created by local opera-
tions and classical communication (LOCC) only [15].
Recently, however, it became clear that there exist more
general QCs if one removes the LOCC restriction. These
correlations are measured by the quantum discord (QD) [8]
and it is believed that QD quantifies all correlations be-
tween two systems that has a pure quantum origin. Note

that EOF and QD coincide for bipartite pure states; for
mixed states, though, their difference becomes manifest
being both zero, however, when only classical correlations
are present. We can also conceptually understand QCs in
comparison with entanglement by noting that the latter is
due to the superposition principle applied to the whole
Hilbert space of a bipartite system. However, QCs as given
by QD captures, on top of that, the correlations coming
from superposition of states within each subsystem, a
purely quantum effect that it is not possible classically
[16]. From this perspective, one can better grasp why there
exist states with zero entanglement but finite QCs [17].
Another interesting and operational interpretation for QD
is achieved looking at the thermodynamic properties of a
quantum system. In [18] it is shown that QD is related to
the difference of work that can be extracted acting either
globally or locally at a heat bath with a bipartite state when
one-way communication is allowed.
For state (2) QD is [19] QD¼½gð1�2dx�dzÞþ2gð1þ

dzÞþgð1þ2dx�dzÞ�=4�½gð1þDÞþgð1�DÞ�=2, with
dx ¼ h�x

1�
x
2i, dz ¼ h�z

1�
z
2i, and

D ¼ Maxfjh�x
1�

x
2ij; jh�z

1�
z
2ijg: (5)

Note that either jh�x
1�

x
2ij or jh�z

1�
z
2ij is responsible for the

value ofD. As will be seen, it is the interplay between these
two correlations that is relevant in our understanding of
why QD detects a QPT at finite T and EOF does not [20].
We are now in a position to present the behavior of TQD

and EOF between two nearest-neighbor qubits in an infi-
nite spin chain at finite T. We first plot TQD and EOF, for
several T, as a function of the tuning parameter �. This
allows us to prove the main claim in this Letter, namely,
that TQD detects a CP of a QPT at finite T while EOF does
not. Looking at Fig. 1 we see that EOF is maximal in the
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FIG. 1 (color online). EOF (top) and QD (bottom) as functions
of the tuning parameter � for the XXZ model in the thermody-
namic limit. The inset depicts QD for high T near the CP. T
increases from top to bottom. The curves for T ¼ 0 and T ¼
0:01 cannot be distinguished from the T ¼ 0:1. Here and in the
following graphics all quantities are dimensionless.
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CP � ¼ 1 only at T ¼ 0, agreeing with the results of [7].
As we increase T the maximum no longer occurs at� ¼ 1,
moving to the region where �> 1. Also, the higher T the
farther from the CP is located the maximum of EOF. On the
other hand, TQD is maximal at � ¼ 1 when T ¼ 0 and
does not appreciably move away for T � 3. Moreover, its
first-order derivative is discontinuous at the CP not only at
T ¼ 0 but also at T > 0, a remarkable result showing that
TQD inherits at T > 0 all of its important properties pre-
viously seen only at T ¼ 0. This discontinuity of the first
derivative of TQD at � ¼ 1 is our CP detector for non-null
T. In order to prove this unique behavior of TQD, we have
computed for several T many thermodynamic quantities
for the infinite spin chain and also the pairwise correlations
as a function of the tuning parameter �. As can be seen in
Fig. 2, none of these quantities can clearly detect the CP
at T > 0.

Because of subtleties of the NLIE at � ¼ �1 (J > 0), it
is convenient to investigate how TQD behaves near the CP
� ¼ �1 by means of numerical diagonalization of the
Hamiltonian (1) [22]. We computed its thermal density
matrix, and then calculated the nearest-neighbor reduced
density matrix for lattice sizes L ¼ 8 and 10. Again, only
TQD was able to detect the CP for T > 0. Looking at Fig. 3
we clearly see that TQD successfully picks the CPs at � ¼
�1 while EOF does not. For finite T, the first derivative of
TQD is discontinuous at both CPs. EOF, on the other hand,
is zero around� ¼ �1 and its maximum gets shifted to the
right at � ¼ 1. Note that for small T and � ¼ �1 TQD
also resembles its behavior at T ¼ 0, namely, being dis-
continuous at the CP [7].

In order to complement our results, we fix the anisotropy
parameter at � ¼ 1 and then vary the coupling constant J

from negative to positive values, i.e., we go from a ferro-
magnetic to an antiferromagnetic regime. As can be seen in
Fig. 4 TQD decreases as one varies J towards zero from
both sides [9]. Similar to the previous case, TQD inherits
for finite T its behavior at T ¼ 0. However, EOF is only
nonzero for the antiferromagnetic regime; and for finite T
this only occurs away from the vicinity of J ¼ 0. In other
words, the behavior of TQD around J ¼ 0 and T > 0 are
qualitatively similar to its behavior at T ¼ 0 while this is
no longer true for the behavior of EOF.
We can understand this unique aspect of TQD, espe-

cially in contrast to EOF, by taking a careful look at the
analytical expressions giving EOF and TQD. The main
difference in behavior between EOF and TQD is connected
to Eqs. (4) and (5), being directly related to the maximi-
zation process leading to these quantities. For the XXZ
model and at finite T, one can show that around the two
CPs the function maximizing (4) does not abruptly change.
It is either 0 or jh�x

1�
x
2ij � j1þ h�z

1�
z
2ij=2. On the other

hand, for (5), the function maximizing it changes exactly at
the CPs. Before the CPs one has either jh�z

1�
z
2ij or jh�x

1�
x
2ij

as the maximum but after them this role is exchanged.
Indeed, in the vicinity of �<�1 D is given by jh�z

1�
z
2ij

while for �1< �< 1 it is determined by jh�x
1�

x
2ij (see

Fig. 2). Finally, in the vicinity of �> 1 it is determined by
jh�z

1�
z
2ij. It is this change in the function maximizing D,

which occurs at T ¼ 0 [7] and shown here also to occur at
T > 0, that is responsible for the discontinuity of the first
derivate of TQD. For the XXX model, jh�x

1�
x
2ij ¼

jh�z
1�

z
2ij, and therefore no cusplike behavior for TQD is

observed. However, TQD is only zero at J ¼ 0 for any T
while EOF is always zero in the vicinity of J ¼ 0 for T >
0. Moreover, working with small chains (up to 10 qubits)
for various T, we observed that the second derivative of
TQD possesses a relatively high value near J ¼ 0. We
believe that it is likely that as one approaches the thermo-
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FIG. 2 (color online). Thermodynamic quantities for the XXZ
model in the thermodynamic limit. The T ¼ 0 and T ¼ 0:1
curves for the two-point correlation functions are indistinguish-
able. Note that at T ¼ 0 the magnetic susceptibility also detects
the phase transition being discontinuous at the CP [25]. The
specific heat and entropy are null at T ¼ 0.
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FIG. 3 (color online). EOF and QD for a chain of 8 and 10
qubits described by the XXZ model. QD detects both quantum
critical points at finite T while EOF does not.
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dynamic limit the peak of the second derivative moves
towards J ¼ 0.

In summary, we presented a remarkable characteristic of
quantum correlations as given by the quantum discord: its
ability to detect critical points of quantum phase transitions
at finite T. Indeed, by solving an infinite chain described by
the XXZ model in the thermodynamic limit, we showed
that QD is able to highlight the CPs of QPTs for T > 0
while neither the entanglement nor any thermodynamic
quantity achieve the same feat. This property of QD may
be useful in the experimental detection of CPs for QPTs
where one is not able to reach the temperatures below
which a QPT can be seen. Conceptually, this capacity of
QD to detect CPs of QPTs for T > 0 and its interesting and
puzzling dynamical robustness against noise [23,24] illus-
trate the broad range of scenarios where QD helps in the
understanding of fundamental issues of quantum
mechanics.

T.W thanks CNPq for funding. C. T. thanks the
Volkswagen Foundation for financial support. G. A. P. R.
thanks FAPESP for funding. G. R. thanks CNPq/FAPESP
for financial support through the National Institute of
Science and Technology for Quantum Information.
G. A. P. R. and C. T. thank Frank Göhmann for discussions.
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FIG. 4 (color online). EOF and QD for a chain of 8 and 10
qubits described by the XXX model.
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