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In this Letter, we propose an experimental scheme for the observation of a quantum anomaly—-

quantum-mechanical symmetry breaking—in a two-dimensional harmonically trapped Bose gas. The

anomaly manifests itself in a shift of the monopole excitation frequency away from the value dictated by

the Pitaevskii-Rosch dynamical symmetry [L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1997)].

While the corresponding classical Gross-Pitaevskii equation and the hydrodynamic equations derived

from it do exhibit this symmetry, it is—as we show in our paper—violated under quantization. The

resulting frequency shift is of the order of 1% of the carrier, well in reach for modern experimental

techniques. We propose using the dipole oscillations as a frequency gauge.
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Introduction.—The current decade is marked by the
emerging links between ultracold-atom physics on one
hand and cosmology and high-energy physics on another.
Examples include kinetics of black holes [1], electron-
positron pair production [2], Zitterbewegung [3], and
the string theory limits posed on viscosity [4,5].
However, quantum anomalies are usually considered to
be a purely quantum-field-theoretical phenomenon [6,7].
In this Letter, we suggest a scheme for observing a quan-
tum anomaly in ultracold two-dimensional harmonically
trapped Bose gas.

Quantum anomaly—otherwise known as quantum me-
chanical symmetry breaking—consists of three ingre-
dients. The first ingredient is an exact symmetry in the
classical version of the theory in question. The second
ingredient is a divergence that appears in the straightfor-
ward quantum version of the theory. The third ingredient is
a weak violation of the original symmetry that emerges in a
regularized version of the quantum theory.

The two-dimensional � potential has been long recog-
nized as an example of quantum anomaly in elementary
quantum mechanics [8,9]. The classical symmetry of the
�2 potential originates from the following property: under
the scaling transformation r ! �r, the potential transforms
in exactly the same way as the kinetic energy does. A
consequence of this property is the absence of any length
scale in the corresponding dynamical problem, both before
and after a straightforward quantization. Next, an analysis
of the scattering properties of the �2 potential [10,11]
shows a divergence in an all Born orders of the scattering
amplitude starting from the second. Finally, the subsequent
regularization [10,11] leads to the appearance of the new
length scale a2D. The original symmetry becomes broken,
and a quantum anomaly emerges.

In Ref. [12], Pitaevskii and Rosch predicted a dynamical
symmetry that appears in the classical field theory (Gross-
Pitaevskii equation) of the �2-interacting two-dimensional

harmonically trapped Bose gas. This symmetry is a direct
consequence of the scaling symmetry of the �2 potential,
described above. The consequences of this symmetry are
(a) absence of the amplitude dependence of the main
frequency (isochronicity) and (b) absence of higher over-
tones in the time dependence (monochromaticity) of the
monopole oscillations of the moment of inertia. Both
properties were demonstrated experimentally [13], along
with an anomalously slow damping, for the case of a very
elongated Bose-Einstein condensate; its Gross-Pitaevskii
equation coincides with the one for a two-dimensional
condensate.
In this Letter we address the question of whether the

Pitaevskii-Rosch symmetry survives quantization.
In the fully quantized unitary gas, the analogous sym-

metry has been shown to remain unbroken [14]. The quan-
tum correction to the frequency of the monopole excitation
in an elongated condensate [13] was computed in Ref. [15].
The zero-temperature equation of state of the two-

dimensional Bose gas.—The low-density zero-temperature
quantum field theory (QFT) expression for the chemical
potential of the two-dimensional Bose gas is well known
[16,17]: it reads

�ðnÞ ¼QFT 4�@
2

m
�ð�e2�þ1na22DÞn; (1)

where a2D is the two-dimensional scattering length, � ¼
0:5772 . . . is the Euler’s constant, n is the two-dimensional
density, and �ðzÞ ¼ 1

�W�1ð�zÞ . For a given two-dimensional

two-body interaction potential VðrÞ, its scattering length
a2D is defined as the radius of a hard disk whose zero-
energy s-wave scattering amplitude equals the one for the
potential V. Here, W�1ðzÞ is the minus-first branch of
the Lambert’s W function [18]. For the small values of
the gas parameter na22D, the factor � is a logarithmically

slow function of the density: �ðzÞ �z!0
1= lnð1=zÞ þ

O½lnð lnð1=zÞÞ= lnð1=zÞ2�. The expression (1) is an inverse
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of a more conventional formula nð�Þ ¼ ðm�=4�@2Þ�
lnð4@2=e2�þ1m�a22DÞ, shown to be the leading term in an
expansion in powers of 1= lnð4@2=e2�þ1m�a22DÞ [19].

In the case of three-dimensional short-range-interacting
atoms tightly confined to a two-dimensional plane by a
one-dimensional harmonic potential, the two-dimensional
scattering length can be expressed through the three-
dimensional scattering length a3D and the confinement

size ~az ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@=ðm!zÞ

p
as a2D ¼ C2D~az exp½�ð ffiffiffiffi

�
p

=2Þ�
ð~az=a3DÞ�, where C2D ¼ 1:47 . . . [20]. The chemical po-

tential becomes �ðnÞ ¼QFT �g2Dn½�ð�ðnÞe�1=�Þ=�� where
�g2D ¼ 4��@2=m is the ‘‘bare’’ two-dimensional coupling
constant, � ¼ a3D=

ffiffiffiffi
�

p
~az is the small parameter governing

the proximity to the classical limit, and �ðnÞ ¼
�e2�þ1ðC2DÞ2n~a2z . In the limit � � minð1; 1=j lnð�ðnÞÞjÞ,
the factor � approaches the density-independent constant
�, and the chemical potential converges to the prediction of
the classical field theory (CFT), otherwise known as the
Gross-Pitaevskii equation; there, the chemical potential
reads

�ðnÞ ¼CFT �g2Dn: (2)

Hydrodynamic equations.—The zero-temperature hy-
drodynamic (HD) equations for a two-dimensional har-

monically trapped Bose gas read

@

@t
nþ rrðnvÞ ¼ 0 (3)

@

@t
vþ ðv � rrÞv ¼ �ð1=mÞrr½�ðnÞ þ VHOðrÞ�; (4)

where m is the atomic mass, n ¼ nðr; tÞ is the atomic
density, v ¼ vðr; tÞ is the atomic velocity, VHOðrÞ ¼
m!2r2=2 is the trapping potential energy per particle,
�ðnÞ is the chemical potential, and r ¼ xex þ yey.

Assuming that the gas is a Bose condensate with no vor-
tices, the velocity field can be assumed to be irrotational:
v ¼ @r�=m, where �ðrÞ is the potential of the velocity
field. Under this assumption, the HD equations (3) and (4)
can be rewritten in a Hamiltonian form, @

@t nðr; tÞ ¼
i
@
½H; nðr; tÞ�HD, @

@t�ðr; tÞ ¼ i
@
½H;�ðr; tÞ�HD. The Hamil-

tonian is represented by a sum of two parts, the first being
in turn a sum of the kinetic and interaction energies and the
second being the trapping energy: H ¼ H0 þHHO. Here

H0 ¼
R
d2rf @22m nðr�Þ2 þ "ðnÞg, HHO ¼ R

d2rVHOðrÞ, the
‘‘hydrodynamic commutator’’ ½� � ��HD is given by the
Poisson brackets with respect to the (n, �) canonical
pair,

½Aðnðr; tÞ;�ðr; tÞÞ; Bðnðr0; tÞ;�ðr0; tÞÞ�HD ¼ � i

@

��
@

@n
Aðnðr; tÞ;�ðr; tÞÞ

��
@

@�
Bðnðr; tÞ;�ðr; tÞÞ

�

�
�
@

@�
Aðnðr; tÞ;�ðr; tÞÞ

��
@

@n
Bðnðr; tÞ;�ðr; tÞÞ

��
�2ðr� r0Þ;

and "ðnÞ ¼ R
n
0 dn

0�ðn0Þ is the microscopic energy density.
The Pitaevskii-Rosch symmetry and the quantum anom-

aly at the HD level.—Introducing the generator of the
scaling transformations, Q ¼ 1

@

R
d2rnðr � r�Þ (see

Ref. [12] for example), one obtains the following set of
commutation relations:

½Q;H0�HD ¼QFT 2iH0 þ ia2D
@

@a2D
H0; (5)

½Q;HHO�HD ¼QFT�2iHHO, ½HHO; H0�HD ¼QFT i!2Q. Notice
that the classical field theory chemical potential (2) does
not depend on the two-dimensional scattering length a2D.
Then, the commutator (5) becomes

½Q;H0�HD ¼CFT 2iH0: (6)

In this case, the observables H0, HHO, and Q form a closed
three-dimensional algebra, identical to the one discovered
by Pitaevskii and Rosch [12] at the Gross-Pitaevskii equa-
tion level.

However, the more accurate quantum field theory pre-
diction for the chemical potential (1) depends explicitly on
a2D. According to the Eq. (5), the classical commutation
relation (6) becomes corrected by ia2D

@
@a2D

H0. Since the

correction term is not generally expected to be a function

of three original members of the algebra, the algebra
opens; such an opening constitutes a quantum anomaly.
Castin-Dum-Kagan-Surkov-Shlyapnikov equations.—If

the factor � in the chemical potential expression (1) was
a constant, the HD equations (3) and (4) could be solved
via the Castin-Dum-Kagan-Surkov-Shlyapnikov (CDKSS)
scaling ansatz [21,22]. Note however, that � is a very slow
function of the density, and thus the scaling ansatz should
approximately hold. Consider the following ansatz:

nðr; tÞ ¼ 1
�ðtÞ2 n0½1� fr=ð�ðtÞRÞg2�, vðr; tÞ ¼ err

_�ðtÞ
�ðtÞ ,

where ~RTF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2Dðn0Þn0=m!2

p
is the steady-state HD

curvature of the density distribution [that also corresponds
to the Thomas-Fermi radius of a gas with a density-
independent coupling constant fixed to g2Dðn0Þ], g2DðnÞ �
ð@�=@nÞ is an effective density-dependent coupling con-
stant, n0 is the steady-state peak density; the scaling pa-
rameter � obeys the CDKSS equation

€� ¼ !2uð�Þ
�3

�!2� (7)

with uð�Þ ¼ g2Dðn0=�2Þ=g2Dðn0Þ. It can be shown that the
above ansatz solves the HD equations (3) and (4) almost
everywhere, with the exception of an exponentially narrow
ring close to the edge of the cloud.
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Anomalous frequency shift of the monopole frequency.—
Linearization of the Eq. (7) for small excitation amplitudes
readily gives the frequency of small oscillations, � ¼
�0½1þ �ðAR� ¼ 0Þ�, where [23]

�ðAR� ¼ 0Þ ¼ 1

4

�ð�ðn0Þe�1=�Þ
½1� �ð�ðn0Þe�1=�Þ�2 : (8)

The deviation of the monopole frequency� from the clas-
sical field theory prediction �0 � �j��minð1;1=j lnð�ðnÞÞjÞ ¼
2! is a manifestation of the quantum anomaly.

Here and below, AR�¼ð�max��minÞ=ð�maxþ�minÞ¼
ð�2

max�1Þ=ð�2
maxþ1Þ is the aspect ratio for the monopole

oscillations.
For � � minð1; 1

j lnð�ðn0ÞÞjÞ, the relative anomalous cor-

rection converges to

�ðAR� ¼ 0Þ � 1

4
ffiffiffiffi
�

p a3D
~az

: (9)

In particular, this estimate shows that the effect of the
anomaly can be enhanced using a Feshbach resonance.

Furthermore, a numerical analysis shows that under
quantization, the monopole frequency becomes amplitude
dependent. Figure 1 shows the corresponding prediction of
the CDKSS equation (7) compared to both the results of the
full HD treatment (3) and (4) and the limiting values (9).

A possible experimental scheme for detecting the
anomalous frequency shift.—Consider the following exci-
tation scheme. Initially, the cloud is prepared in the ground
state of a frequency!init: trap at a position x ¼ 0, y ¼ 0. At
t ¼ 0, the trap is simultaneously relaxed to a lower fre-
quency! and shifted to a new position x ¼ x0, y ¼ 0. This
initial condition will induce a superposition of a monopole
oscillation that starts from the lowest cloud size turning
point and a dipole oscillation—whose frequency ! does
not depend on either interaction strength or the oscillation
amplitude—that starts from the left (right) turning point for
x0 > 0ðx0 < 0Þ.

What we suggest is to measure the spatial mean of
the square of the horizontal displacement with respect to
the new trap center, sðtÞ ¼ R

dxdyðx� x0Þ2nðx; y; tÞ. After
a lengthy but straightforward calculation it can be shown
that this observable will evolve in time as sðtÞ= ~R2

TF¼Pþ
Acos½�0t�þBcos½�0f1þ�ðAR�Þgtþ	�, where P ¼
ð�4

max þ 1Þ=12�2
max þ 
2=2, A ¼ 
2=2, B ¼ ð�4

max �
1Þ=12�2

max, 	 ¼ �, 
 ¼ x0= ~RTF, and ~RTF is the effective
Thomas-Fermi radius for the final, frequency ! trap (see a

definition above). Choosing
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�4
max�1
6�2

max

r
leads to A ¼ B. It

is easy to see that in this case, at t ¼ 0 the beats between
the dipole and monopole oscillations have a node, with the
first crest reached in 1=ð2�ðAR�ÞÞ monopole periods. In
terms of the initial trap, the optimal shift of the trap can be

expressed as x0 ¼ 1ffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!init:

! Þ2 � 1
q

~RTF;init:, where ~RTF;init: ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!=!init:

p
~RTF is the Thomas-Fermi radius for the initial,

frequency !init: trap. Note as well that the right turning

point for the oscillations of the scaling parameter can be

expressed as �max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!init:=!

p
. In our excitation scheme,

the monopole oscillations start from the left turning point
that in turn corresponds to the lowest cloud size. The insert
of Fig. 1 presents an example of the projected beat signal
for a typical set of parameters.
Some residual anharmonicity and anisotropy may com-

plicate matters. For the anharmonicity, one can show that
for a quartic correction of a form m!2r2=2 !
ðm!2r2=2Þð1þ �r2=2a20Þ (a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p
being the size

of the ground state), the relative (to the monopole fre-

quency) shift of the monopole frequency is �anharm: ¼
12
11�

ffiffiffiffiffiffiffi
N�

p
, to the leading order in both � and the amplitude.

The doubled dipole frequency—that serves as a refer-
ence—is unshifted in that order. On the other hand, the
anisotropy leads to a splitting of the dipole frequency with
the monopole frequency situated in between the two re-
sulting frequencies. Assume the doubled x-dipole fre-
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FIG. 1 (color online). Relative anomalous shift of the mono-
pole frequency, �ðAR�Þ � ð���0Þ=�0 as a function of the
amplitude of the excitation, for different values of the transverse
confinement frequency !z. Solid lines: prediction of the modi-
fied Castin-Dum-Kagan-Surkov-Shlyapnikov (CDKSS) model
(7). Crosses: prediction of the HD equations (3) and (4). Ar-
rows: the a3D � ~az limit (9) of the CDKSS model prediction (8)
for the zero-amplitude shift. The rest of the parameters corre-
sponds to N ¼ 103 rubidium 87 atoms (a3D ¼ 5:2 nm) confined
longitudinally in a frequency! harmonic trap, where! ¼ 2��
41 Hz for the!z ¼ 2�� 45 kHz data and! ¼ 2�� 40 Hz for
the rest of the data. The steady-state peak density n0 entering the
CDKSS model was derived from the number of atoms N using
the Euler equation (4). A possible experimental setup corre-
sponding to the 45 kHz curve is described in detail in the
concluding section of this Letter. Insert shows the monopole
vs dipole beat signal for the optimal choice of the initial trap
shift (see main text). Parameters correspond to the 45 kHz curve
taken at the aspect ratio AR� ¼ 0:486. We also show the initial
linear part of the slow envelope, ð�2

max=6þ ½ð�4
max �

1Þ=ð12�2
maxÞ��ðAR� ¼ 0:486Þ�0t plotted with a �10% uncer-

tainty in the value of the anomalous correction �ðAR�Þ ¼
0:00760. The CDKSS model was used for calculations.
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quency 2!x is chosen as a reference. Then the relative to
this frequency monopole shift will be given, to the lowest
order in both anisotropy !x �!y and the amplitude, by

�anisotr: ¼ ð!x �!yÞ=2!x;y, where !x;y is any of the two

frequencies. Both the anharmonicity (�anharm:) and anisot-
ropy (�anisotr:) shifts must be kept below 1% to allow for
observation of the quantum anomaly.

Vortex-antivortex pair creation has been suggested as the
dominant mechanism for damping of the two-dimensional
monopole oscillations [2], all the conventional channels
being suppressed due to the Pitaevskii-Rosch symmetry.

Here, the amplitude of the oscillations decays as �maxðtÞ ¼
�maxðtÞ=ð1þ t=�Þ1=10, where � ¼ 737280

127 ð!init:

! Þ5ð�minð0Þ
�maxð0ÞÞ10 �

lnð4m �g2DN=
ffiffiffi
�

p
@
2Þ

ðm �g2D=@
2Þ9=4 ffiffiffi

N
p . Here, it is assumed that the amplitude of

oscillations is large (i.e., �max 	 1) and the gas is dilute
(i.e., a3D � ~az).

Let us now propose a concrete example of a trap suited
for an observation of the quantum anomaly. The numbers
proposed are those of rubidium 87 in its 5S1=2, F ¼ 2,
mF ¼ 2 ground state. A blue detuned standing wave
(wavelength 532 nm, power P, waist w0) crosses, at a right
angle, the symmetry axis z of a quadrupolar magnetic field;
the magnetic field gradients are given by b0 in the xy plane
and�2b0 along z. This results in a series of pancake traps:
there, the magnetic field is responsible for the weak hori-
zontal trapping, while the standing wave gives a strong
vertical confinement. Atoms could be loaded in one of the
nodes of the standing wave, at a distance z ¼ d from the
trap center; there the magnetic field is bounded from below
by B0 ¼ 2b0d. By construction, this trap should be iso-
tropic in the horizontal plane. Furthermore, the residual
anisotropy defects could be further compensated by adding
small magnetic gradients in the horizontal plane. For b0 ¼
167 G=cm, d ¼ 400 �m, P ¼ 4 W, and w0 ¼ 500 �m,
the oscillation frequencies are 41 Hz� 41 Hz� 45 kHz,
and the magnetic field minimum B0 ¼ 13:4 G well pre-
vents any Majorana losses. The photon scattering rate is as
low as 2:6� 10�3 s�1, corresponding to 30 000 monopole
mode oscillations. For N ¼ 104 atoms (10 times the num-
ber used in Fig. 1), the anharmonic parameter is bounded
from above by � ¼ �2:1� 10�6. The predicted Thomas-
Fermi radius of 15 �m is much smaller than both d and
w0; accordingly, the anharmonic shift has a negligibly
small value of �anharm: ¼ 5� 10�5. The chemical potential
of �=h ¼ 1:7 kHz is well below the transverse frequency;
this ensures that the trap is sufficiently deep in the two-
dimensional regime. Finally, taking the oscillation aspect
ratio of AR� ¼ 0:486 as an example, one obtains the
damping time �which is 1576 times longer than the period
of the monopole oscillations. Overall, these figures bring
our proposal within reach of modern experimental
technology.

Summary and outlook.—In this Letter, we propose an
experimental scheme for observation of a quantum anom-
aly in a two-dimensional harmonically trapped Bose gas.

The effect consists of a shift of the monopole excitation
frequency away from the value dictated by the Pitaevskii-
Rosch dynamical symmetry [12]. The shift we predict is
only of the order of 1% of the base frequency. To detect it,
we propose using the dipole oscillations as a reference
frequency.
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