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The radial structure of the shear Alfvén wave continuous spectrum is calculated inside the separatrix of

a magnetic island. We find that, within a magnetic island, there is a continuous spectrum very similar to

that of tokamak plasmas, where a generalized safety factor q can be defined and a wide frequency gap is

formed, analogous to the ellipticity induced Alfvén eigenmode gap in tokamaks. This is due to the strong

eccentricity of the island cross section. In this gap, a magnetic-island induced Alfvén eigenmode (MIAE)

can exist as a bound state, essentially free of continuum damping, which can be resonantly excited by

energetic particles and interact nonlinearly with the magnetic island. Because of the frequency depen-

dence of the shear Alfvén wave continuum on the magnetic-island size, the possibility of utilizing MIAE

frequency scalings as a novel magnetic-island diagnostic is also discussed.
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Shear Alfvén waves (SAW) are electromagnetic plasma
waves propagating with the characteristic Alfvén velocity
vA ¼ B=

ffiffiffiffiffiffiffiffiffiffi
4�%

p
(B is the magnetic field and % the mass

density of the plasma) as transverse waves along the mag-
netic field. In fusion plasmas, fast ions in the MeV energy
range have velocities comparable with the typical Alfvén
speed and can therefore resonantly interact with SAW and
effectively exchange energy with the wave [1,2]. SAW in a
nonuniform equilibrium are subject to collisionless dissi-
pation, known as continuum damping [3–5], due to singu-
lar structures that are formed where the SAW continuum is
resonantly excited. Because of magnetic field nonuniform-
ities along the field lines in toroidal geometry, gaps appear
in the SAW continuous spectrum [6] due to translational
symmetry breaking, analogous to electrons traveling in a
periodic lattice [1,2]. Discrete Alfvén eigenmodes (AE),
with a frequency inside SAW continuum gaps [7], have a
generally low instability threshold, being practically un-
affected by continuum damping [1–5]. For this reason,
understanding the continuous spectrum structure is impor-
tant, due to the potential impact of AE stability on reaching
the ignition condition for magnetically confined fusion
plasmas.

The SAW continuous spectrum can be modified by the
interaction with low-frequency MHD fluctuations [8], such
as magnetic islands, which are formed when the original
sheared equilibrium magnetic field lines break due to non-

ideal effects (in particular finite resistivity) and reconnect
with different magnetic topology [9]. We model the mag-
netic island as a straight flux tube with a noncircular cross
section [10]. Therefore, we neglect toroidicity effects on
poloidal mode coupling; however, we do take into account
the low-frequency gap in the SAW continuum due to the
effects of geodesic curvature and finite compressibility
[11–13].
We start our analysis by considering a tokamak geome-

try where R0 is the major radius of the torus. The equilib-
rium is made of an axisymmetric tokamak magnetic field
with a component Btor in the toroidal direction �T and a
component Bpol in the poloidal direction �T , plus a helical

perturbation Brad in the radial direction rT , generating a
magnetic island. The subscript T denotes straight B field
line tokamak coordinates. We consider the region in the
proximity of the magnetic-island rational surface with
minor radius r0 and qT ¼ q0 ¼ misl=nisl, where misl and

nisl are, respectively, the poloidal and toroidal mode num-

bers of the magnetic-island perturbation, and qT ¼
rTBtor=ðR0BpolÞ is the safety factor. The constant-c ap-

proximation is adopted, assuming that the magnetic-island
perturbation has the form Brad ¼ Bisl sinu, depending on
the coordinate u ¼ nislð�T � q0�TÞ only. The X points of
the magnetic island are at ðqT � q0; uÞ ¼ ð0; 0Þ and ð0; 2�Þ
and theO point at ð0; �Þ. The magnetic flux surfaces of this
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equilibrium are labeled by c ¼ ðqT � q0Þ2=2þ
Mðcosuþ 1Þ. M is a constant M ¼ ðq0jsj=nislÞ�
ðBisl=Bpol;0Þ, determined by the condition rc � B ¼ 0,

where s is the magnetic shear and Bpol;0 is the poloidal

magnetic field evaluated at the rational surface qT ¼ q0.
Here, the region inside the magnetic island is a straight

flux tube with length 2�Z0 ¼ 2��q0R0, with � the trans-
lational symmetry coordinate, c the label of nested flux

surfaces, � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "20=q

2
0

q
, and "0 ¼ r0=R0. The magnetic

axis and island O point are at c ¼ 0, while the separatrix
is labeled by c ¼ c sx ¼ 2M. The complete set of cylin-
derlike coordinates (�, �, �) is defined by radial-like and
anglelike coordinates given by

� ¼ r0
q0s

ffiffiffiffiffiffiffi
2c

p
; � ¼ arccos½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðcosuþ 1Þ=c

q
�: (1)

With these definitions, the magnetic axis is at � ¼ 0 and
the separatrix radius is � ¼ �sx, which corresponds to the
magnetic-island half-width Wisl, given by the Rutherford
formula [14]:

Wisl

r0
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bisl

q0snislBpol;0

s
¼ �sx

r0
¼ 2

q0�nisl

ffiffiffiffiffiffiffiffiffiffiffiffi
1� e

p
;

with e defined below in this paragraph. The angle � is
defined in the domain ð0; �=2Þ and extended to ð0; �Þ by
reflection symmetry with respect to � ¼ �=2, with values
0; � at the rational surface q ¼ q0. Further extension to
ð0; 2�Þ is obtained by reflection symmetry for � $ ��.
We also point out that the flux surface’s cross section in the
ð�; �Þ plane and in the proximity of the O point is an
ellipse, with eccentricity e ¼ 1�Mn2isl�

2=s2. Typical

magnetic islands in tokamak experiments have values of
eccentricity close to e ’ 1.

In the cylinderlike coordinates (�, �, �) defined inside
the magnetic island, the contravariant physical components
of the equilibrium magnetic field are

B�
ph ¼ 0; B�

ph ¼ B�
ph;0

ffiffiffi
a

p
�; B�

ph ¼ B0:

Here B�
ph;0 ¼ "0jsjB0=ðq0r0�2Þ is the value of B�

ph at � ¼
1, � ¼ �=2, where B0 ¼ �Btor. The function a is defined

as a ¼ sin2�þ cos2�ð1� eÞF2, with F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2cos2�

p
and x ¼ �=�sx. The contravariant physical components of
a vector V on a basis fgr;g�; g� g are defined here as the

contravariant components rescaled with the length of the
correspondent basis vector, e.g., V

�
ph ¼ V�jg�j. The safety

factor q can be defined inside the magnetic-island flux tube

as the average of Q ¼ �B0=ðZ0B
�Þ over �, with B� ¼

B�
phF

ffiffiffiffiffiffiffiffiffiffiffiffi
1� e

p
=ð ffiffiffi

a
p

�Þ; i.e.,

q ¼ 2

�

�

jsj ffiffiffiffiffiffiffiffiffiffiffiffi
1� e

p KðxÞ; (2)

where we have introduced the complete elliptic integral of

the first kind KðxÞ ¼ R�=2
0 d�=F. A similar definition was

given in Ref. [15]. The result, normalized to the minimum
value qðx ¼ 0Þ, is shown in Fig. 1. We see that qðxÞ has a
singular behavior near the separatrix x ¼ 1, since B� van-
ishes at � ¼ �sx, � ¼ 0; �. This feature is due to the X
points and is analogous to safety factor profiles in diverted
tokamak plasmas.
Given the three-dimensional plasma equilibrium defined

above, wewant to study the shear Alfvén wave propagation
near the resonant flux surfaces where the energy is ab-
sorbed by continuum damping; therefore, we focus on the
dynamics of modes that are characterized by radial singu-
lar structures. The linear equation for radially localized
shear Alfvén modes in a compressible nonuniform toka-
mak plasma can be written in the form [11]:

!2

!2
A

r2
?�þ Z2

0rkr2
?rk��!2

BAE CAP

!2
A

r2
?� ¼ 0; (3)

where !A ¼ vA=Z0. The frequency of the low-frequency
SAW continuum accumulation point (CAP), delimiting the
frequency gap of the beta induced Alfvén eigenmode
(BAE), is defined as [11–13]

!BAE CAP ¼ 1

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti

mi

�
7

4
þ Te

Ti

�s
; (4)

where Ti and Te are the ion and electron temperatures, and
mi is the ion mass. Here, we focus on frequencies higher
than !BAE CAP and consistently neglect kinetic effects
associated with wave-particle resonances [13]. The opera-
tors rk and r? are parallel and perpendicular gradients

with respect to the equilibrium magnetic field.
Now, we write the equation for radially localized shear

Alfvén modes, Eq. (3), in the cylinderlike coordinates
introduced above. The parallel and perpendicular differen-
tial operators have the following form:

Z0rk ¼
ffiffiffiffiffi
M

p
nislF

@

@�
þ @

@�
; �2

sxr2
? ¼ a

@2

@x2
;

and the boundary conditions of the problem are periodicity

FIG. 1 (color online). The safety factor inside a magnetic
island, normalized to qð0Þ ¼ 1=ð ffiffiffiffiffi

M
p

nislÞ ¼ �=ðjsj ffiffiffiffiffiffiffiffiffiffiffiffi
1� e

p Þ. For
typical magnetic islands, 1� e < 10�2 and we have qð0Þ> 10.
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conditions in � and � on 2� circles. Moreover, using the
symmetry of the equilibrium in the � coordinate, we can

write the general solution as � ¼ �̂ðx; �Þ expð�in�Þ,
where n is the mode number in the � direction.

The problem we are considering is greatly simplified if
we change coordinates from (�, �, �) to a field aligned set

of coordinates (�, �, �), where � ¼ � � �ðx; �Þ, and � ¼
ð ffiffiffiffiffi

M
p

nislÞ�1
R
�
0 d�

0=Fðx; �0Þ is the normalized incomplete

elliptic integral of the first kind. In fact, we have B � r� ¼
0, and the parallel derivative takes the simple form Z0rk ¼ffiffiffiffiffi
M

p
nislF@=@�. Finally, Eq. (3) is written in the form of an

eigenvalue problem:

�
�2

Mn2isl
þ F

a

@

@�
aF

@

@�

�
~�00 ¼ 0; (5)

where �2 ¼ ð!2 �!2
BAE CAPÞ=!2

A is the eigenvalue, and
~�00 ¼ ð@2�̂=@2xÞ expð�in�Þ is the eigenfunction. The

boundary condition �̂00ð� ¼ 0Þ ¼ �̂00ð� ¼ 2�Þ now reads
~�00ð� ¼ 0Þ ¼ ~�00ð� ¼ 2�Þ expð2�inqÞ, with the safety
factor q defined in Eq. (2). We note that, in the case of
small eccentricity e � 1, and close to the O point x ’ 0,
we have a ¼ F ¼ 1 and Eq. (5) reduces to the problem in
cylindrical geometry: �2 ¼ Mn2islðnq�mÞ2, where m is

the poloidal mode number.
The equation for SAW continuous spectrum written in

the form of an eigenvalue problem in the coordinates (�, �,
�), as in Eq. (5), is an ordinary differential equation in one
variable, �, where the radial position x is treated as a
parameter. It can be solved numerically, with a shooting
method code for each position 0< x< 1, giving the con-
tinuous spectrum�2ðxÞ as the result. In Fig. 2, we show the
result for the case e � 1, where we consider continuum

modes with n ¼ 10. We choose typical values for the
equilibrium parameters, q0 ¼ 2, s ¼ 1, "0 ¼ 0:1, nisl ¼
1. In this case, we see that near the O point, x ’ 0, the
result of the cylindrical geometry is recovered. On the
other hand, for x� 1, the flux surfaces have a noncircular
cross section and therefore the modes with different m
numbers are coupled. This mechanism creates a gap in
the spectrum analogous to the ellipticity induced Alfvén
eigenmode gap in tokamaks [16], dubbed here as
magnetic-island induced AE (MIAE) gap. We repeated
the calculation for a magnetic island with a typical size,
M ¼ 10�2, using the same equilibrium parameters. This

corresponds to Wisl ’
ffiffiffiffiffiffiffiffiffiffiffiffi
1� e

p
r0 ¼ 0:1r0, which is the or-

der of magnitude of a saturated magnetic island in toka-
maks. For this case, we considered modes with n ¼ 1. The
continuous spectrum structure, shown in Fig. 3, is the same
as for M ¼ 1, but in this case we obtain a much wider
MIAE gap. This is due to the fact that flux surfaces of a
typical magnetic island have a high eccentricity, which
strongly couples modes with different m numbers. The
MIAE gap central frequency is proportional to the
magnetic-island half-width:

�MIAE ¼ ffiffiffiffiffi
M

p
nisl ¼ q0snisl

2

Wisl

r0
: (6)

For typical tokamak plasma parameters,
!2

BAE CAP=!
2
A � 	q20, with 	 denoting the ratio between

plasma and magnetic pressures. Therefore, finite compres-
sion BAE frequency gap and magnetic-island induced
MIAE gap are of comparable size when M� 	q20, i.e.,
for a typical saturated magnetic-island size in tokamaks. A
gap analogous to the toroidicity induced Alfvén eigenmode
gap [7,17] is not found here, because we consider a straight
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M = 1

FIG. 2 (color online). Continuous spectrum �ðxÞ for the small
eccentricity case, e � 1, corresponding toM ’ 1, plotted versus
the radial position inside the island. Typical values of the
equilibrium parameters have been chosen and nisl ¼ 1. The O
point is at x ¼ 0 and the separatrix at x ¼ 1. Modes with n ¼ 10
are considered. The MIAE gap is found at frequencies ��ffiffiffiffiffi
M

p
nisl.
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FIG. 3 (color online). Continuous spectrum �ðxÞ for n ¼ 1
and a typical size magnetic island: M ¼ 10�2, corresponding to
e ’ 0:99. In this case, the structure of the continuous spectrum is
the same as for M ¼ 1, but the MIAE gap is much wider. This
implies that a wide range of frequencies exists, where modes
contained within the magnetic island are not affected by con-
tinuum damping.
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flux tube model, neglecting the effect of curvature coupling
among different m numbers. Nevertheless, such a toroidal
MIAE gap is expected to be present inside magnetic
islands, at frequencies lower than the frequencies of the
ellipticity MIAE gap. Its gap width can be estimated by
substituting vA with vA=ð1þ "0 cos�TÞ in Eq. (3). This
gives a multiplication factor (1þ 2"0 cos�T) to the first
and third terms of Eq. (3) ("0 is supposed to be small), and
consequently to the first term of Eq. (5). Therefore, anal-
ogously to the theory of toroidicity induced AE, we expect
to have a toroidicity induced gap within a magnetic island,
with a width of the order of ��2 ’ Mn2isl"0. The magnetic

island also has a modulation in the tokamak toroidal di-
rection, given by the number nisl. This helicity of the flux
tube is neglected here and is expected to weakly couple
modes of the SAW continuous spectrum with different n,
analogously to the case of stellarators. These effects are not
expected to qualitatively modify the MIAE gap and will be
investigated in a different work as further extension of the
present theory.

In summary, we have found that there exists a SAW
continuous spectrum within a magnetic island, similar to
that calculated in tokamak equilibria. In particular, a typi-
cal size magnetic island is shown to produce a wide gap in
the continuous spectrum, labeled here as MIAE gap. Note
that MIAE can exist as bound states within the island,
essentially free of continuum damping, provided that
plasma equilibrium effects and free energy sources can
drive and bind them locally [4]. Here, we emphasize the
analogy between the equilibrium inside a magnetic island
and the tokamak equilibrium, and, consequently, the
analogies between AE within the magnetic islands
(MIAE) and the well-known AE in tokamaks. Given that
plasma equilibrium nonuniformities and wave resonant
interactions with energetic particles provide, respectively,
frequency shift and mode drive [1,2], the MIAE peculiarity
resides in the corresponding SAW continuous spectrum
dependence on the magnetic-island size.

This result has important implications to the study of the
dynamics and stability properties of a magnetic island. In
fact, the presence of MIAE inside a magnetic island could
modify the equilibrium profiles and nonlinearly affect the
magnetic-island growth. On the other hand, MIAE could
nonlinearly interact with energetic particles and affect their
redistribution in the proximity of the magnetic-island ra-
tional surface. This process would add on the redistribution
of fast ion population near a magnetic-island rational sur-
face, caused in part by the radial magnetic field due to the
magnetic island itself [18]. Therefore, adding the effect of
MIAE can help to better understand fast particle dynamics
in the presence of a magnetic island and explain the
possible discrepancies between measured fast ion redis-
tributions and theoretical predictions.

We have also shown that the frequency of the ellipticity
MIAE gap is proportional to the magnetic-island width

[see Eq. (6)]. This suggests the possibility of using the
MIAE frequency scalings as a novel magnetic-island diag-
nostics in a fashion similar to other commonly used Alfvén
spectroscopy techniques [19–21]. In fact, by detecting
MIAE inside the island and measuring their frequency,
one has indirect information on the magnetic-island size.
Unlike in the BAE case, the radial MIAE localization at the
center of the island makes them difficult to detect by
external measurements, and makes the use of internal
fluctuation diagnostics, such as electron cyclotron emis-
sion and soft x rays, necessary.
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