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We demonstrate analytically and numerically that a subwavelength-core dielectric photonic nanowire

embedded in a properly designed photonic crystal fiber cladding shows evidence of a previously unknown

kind of nonlinearity (the magnitude of which is strongly dependent on the waveguide parameters) which

acts on solitons so as to considerably reduce their Raman self-frequency shift. An explanation of the phe-

nomenon in terms of indirect pulse negative chirping and broadening is given by using the moment

method. Our conclusions are supported by detailed numerical simulations.
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Photonic nanowires (PNs), i.e., dielectric waveguides
with a subwavelength core diameter, tight mode confine-
ment, and strong waveguide dispersion, have recently at-
tracted growing interest due to accessibility of new
fabrication techniques for a large variety of materials,
which may lead to a number of miniaturized, high-
performance photonic devices [1]. The small effective
modal area exhibited by PNs, which increases considerably
the Kerr nonlinear coefficient, and the degree of control-
lability of the dispersion characteristics, makes PNs espe-
cially suitable for the investigation of extreme nonlinear
phenomena such as supercontinuum generation, as many
optical solitons can be excited by using small pump ener-
gies [2].

In recent theoretical work, a novel propagation equation
that accurately describes the nonlinear evolution of light
pulses in PNs was introduced [3]; see also Eq. (2) of this
Letter. The fundamental feature found in [3] is that, thanks
to the fact that the correct equation takes into full account
the variations in the linear mode profiles of the waveguide
with wavelength, new nonlinear effects arise in PNs, un-
known in previous formulations based on the generalized
nonlinear Schrödinger equation (GNLSE) [4], which all
assume fixed transverse field profiles. Most of the addi-
tional terms described in Ref. [3] have been found to have
an extremely small magnitude, so that they can be safely
neglected for large core fibers. However, the longitudinal
component of the electric field of the fundamental mode of
PNs becomes progressively more important when decreas-
ing the core diameter or when increasing the refractive
index contrast between core and cladding [3]. This vigo-
rously breaks the rotational symmetry of the mode, whose
transverse profile becomes very sensitive to frequency, thus
making the new geometrical nonlinearity—as we shall call
it in the following—extremely important. In fact, for small
enough core sizes, such new nonlinear terms may even
enter into strong competition with the Raman effect term
for some range of frequencies.

Only the circular geometry for PNs has been considered
in Ref. [3]. Circular strands of high-refractive index mate-
rials in air or in a homogeneous cladding, however, are far

from optimal for experimentally detecting the effects of the
novel term, because the maximum of the geometrical non-
linear coefficient is located, as a rule, far away in a region
of strong normal dispersion, where bright solitons cannot
exist. In fact, as has been anticipated in Ref. [3], the new
nonlinearity is visible only in the presence of solitons, and
its effects are nearly invisible in the normal dispersion
regime.
However, one is by no means restricted to the use of a

homogeneous cladding around the high-index core. In this
Letter we explore the possibility of introducing the PN into
a silica-based photonic crystal fiber (PCF, [5]) with a
triangular arrangement of the holes [see Fig. 1(a)]. We
call such a design a photonic crystal fiber nanowire (PCF
NW). Such a structure has the additional advantage that
relatively long PNs can be supported by the robust PCF
cladding [5,6]. In this Letter we demonstrate that, by
means of careful choice of parameters in the design of
PCF NWs, one can move the maximum of the geometrical
nonlinearity inside the region of anomalous dispersion.
This will make it much easier to observe the new geomet-
rical nonlinearity experimentally, in that it causes consid-
erable suppression of the soliton self-frequency shift
(SSFS, see Ref. [7]) from the very start of the propagation.
Thus, just a judicious choice of the geometry of the PCF
cladding around the nanowire, which affects the dispersive
properties of the waveguide and the way the mode profiles
change with wavelength, will be sufficient for the emer-
gence of previously invisible nonlinear effects, thus intro-
ducing novel ways of controlling the nonlinear light-matter
interactions in the medium, a feat that would be extremely
difficult if not impossible to achieve with other simpler
geometries.
The fiber geometry that we propose in this Letter is

shown in Fig. 1(a). It is made of a silica PCF cladding
with a triangular lattice of air holes, with pitch � ¼
1:4 �m and hole radius R ¼ 0:56 �m. The central core,
of radius Rc ¼ 0:5 �m, is made of a high-refractive index
tellurite glass (T2 composition taken from Ref. [8]), which
possesses an estimated nonlinear coefficient n2 � 4�
10�19 m�1 W�1, almost 15 times larger than that of fused
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silica [9]. Its Raman gain spectrum hð!Þ is shown in
Fig. 1(b). In this waveguide, light confinement is provided
by total internal reflection at the core-cladding boundary.
Air holes in the rings modify the dispersion in such a way
as to match our requirements. Our choice of core material
and PCF parameters has been dictated by two conditions,
which cannot easily be simultaneously met. The first re-
quirement is that there must be a relatively large refractive
index contrast between core and cladding, so that the
magnitude of the longitudinal component of the electric
field becomes appreciable, and in turn that the mode profile
changes strongly with frequency. The second requirement
is that the holes should considerably modify the group
velocity dispersion (GVD), in such a way that the maxi-
mum of the geometrical nonlinear coefficient is located
inside the region of anomalous dispersion. However, the
larger the refractive index contrast, the more the field is
localized in the core, which makes the dispersion of the
waveguide progressively more and more like that of a
single rod surrounded by homogeneous silica, which has
been proved to be nonoptimal in Ref. [3]. A trade-off
between the above conditions must be found. We have
examined the dispersion of many high-index glasses for
the core material and systematically explored hundreds of
specific parameters for the PCF cladding, but the above
tellurite-based design seems to be one of the best solutions
for our purposes. Such multiglass hybrid waveguides can
be fabricated by using the pressure-cell approach [10].

For each frequency !, the linear fundamental mode of
the waveguide of Fig. 1(a) has a normalized electric field
profile given by ê!ðr?Þ, where r? are the transverse coor-
dinates. The inset in Fig. 1(a) shows a density plot of the
total intensity jjêjj2 � ½ê2x þ ê2y þ ê2z� for the fiber parame-

ters given in the caption, corresponding to our representa-
tive PCF NW design that we shall use throughout the

Letter. Because of the specific symmetry of the PCF clad-
ding under investigation, the waveguide does not exhibit
any birefringence, and it has a fundamental mode that is
degenerate in the two orthogonal polarization states. The
crucial point of our formalism is that one can describe the
full ! variations of ê through the Taylor series

ê !ðr?Þ ¼
X
j�0

1

j!
fðjÞ!0

ðr?Þ
�
�!

!0

�
j
; (1)

where �! � !�!0 is the frequency detuning from an

arbitrary reference frequency !0, and the quantity fðjÞ!0
�

½!j
0@

jê!ðr?Þ=@!j�!¼!0
is proportional to the jth fre-

quency derivative of the mode profile. From now on, letters
j; h; p; v will be used for derivative indices. Following
Ref. [3], one can rigorously prove that the equation gov-
erning the nonlinear light propagation of one of the two
polarization states of the fundamental mode of the PCF
NW is given by

i@zQþ D̂ði@tÞQþ X
jhpv

�jhpvĜjði@tÞ�hpv ¼ 0: (2)

In Eq. (2), Qðz; tÞ is the electric field envelope, D̂ði@tÞ �
�ð!0 þ i@tÞ � �ð!0Þ is the dispersion operator that enc-
odes all information on the fiber GVD around!0 [11], � is
the !-dependent propagation constant of the fundamental

mode, and Ĝjði@tÞ � ½1þ ði=!0Þ@t�½ði=!0Þ@t�j is an oper-
ator that naturally contains the dynamics of the shock term
at the zeroth order of the Taylor expansion (j ¼ 0). The
convoluted nonlinear fields used in Eq. (2) are defined as

�hpvðz; tÞ � ½ði@tÞhQ�fR � ð½ði@tÞpQ�½ð�i@tÞvQ��Þg
!hþpþv

0

; (3)

where symbol � is used to denote a time convolution:
A�B�Rþ1

�1Aðt� t0ÞBðt0Þdt0 ¼B�A. In Eq. (3), RðtÞ �
ð1� �Þ�ðtÞ þ �hðtÞ is the nonlinear response function of
the core, which is made of a tellurite glass following the
design of Fig. 1(a), and includes the instantaneous Kerr
[proportional to the Dirac delta �ðtÞ] and the noninstanta-
neous Raman [proportional to hðtÞ] responses exhibited by
the core material, � being the relative importance between
the two. In this Letter, from the experimental Raman gain
of tellurite glass [solid blue line in Fig. 1(b), taken from
Ref. [8]) we can extract a fit of hð!Þ [dotted red line in
Fig. 1(b)] that we thus use in the numerical simulations.
The r? dependence of RðtÞ can be safely neglected, since
most of the energy is located in the core material, which is
also much more nonlinear than the surrounding silica clad-
ding. Note that in Eq. (3), �000 ¼ Q

R
Rðt� t0ÞjQðt0Þj2dt0

gives the conventional, zeroth order convolution that is
used in the GNLSE, a widely used equation that is able
to describe the propagation of nonlinear light with extreme
accuracy in a large variety of physical situations [11,12].

FIG. 1 (color online). (a) Schematics of the proposed PCF
nanowire geometry. The central nanowire core is made of
tellurite glass (77TeO2-10Na2O-10ZnO-3PbO composition, T2
glass from Ref. [8]), while the cladding is made of silica with a
triangular lattice of air holes. Parameters are pitch � ¼ 1:4 �m,
hole radius R ¼ 0:56 �m, core radius Rc ¼ 0:5 �m. Inset: The
density plot of the mode profile intensity jjêðr?Þjj2 of the
waveguide for � ¼ 1:55 �m is shown. (b) Profile of the
Raman gain spectrum for the T2 composition. Solid blue line,
experimental data taken from Ref. [8]; dotted red line, fit used in
our simulations.
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The last ingredient in Eq. (2) contains the generalized nonlinear coefficients �jhpv, defined as

�jhpvð!0Þ � !0

16c

Z
dr?�

ð3Þ
xxxxðr?Þ f½f

�ðjÞ
!0

	 fðhÞ!0
�½fðpÞ!0

	 f�ðvÞ!0
� þ ½f�ðjÞ!0

	 fðpÞ!0
�½fðhÞ!0

	 f�ðvÞ!0
� þ ½f�ðjÞ!0

	 f�ðvÞ!0
�½fðhÞ!0

	 fðpÞ!0
�g

j!h!p!v!
; (4)

where �ð3Þ
xxxxðr?Þ is the third-order susceptibility, which is a

function of the transverse coordinates in the waveguide of
Fig. 1(a). Equation (4) is a generalization of the nonlinear
coefficient commonly used in fiber optics [11], and takes
into account the full vector nature of the field profile as
well as its frequency variations. Such variations are at the
very core of the new geometrical nonlinearities described
here, since the Taylor series of Eq. (1) implies the existence
of an infinite number of additional nonlinear terms that
depend on progressively higher-order time derivatives of
the envelope. The quantities �jhpv satisfy general symme-
try relations that drastically reduce the number of indepen-
dent nonlinear coefficients for each order of the derivative
[3,13]: �jhpv ¼ �vhpj ¼ �jphv ¼ �vphj, �jhhh ¼ �hjhh,
�jhhj ¼ �hjjh. In Eqs. (1) and (3), each field derivative is
associated with a factor !�1

0 , which ensures convergence.
Thus the physically meaningful nonlinear coefficients can
be defined as ~�jhpv � �jhpvð!0t0Þ�ðjþhþpþvÞ, where t0 is
the input pulse duration.

From the expression in Eq. (4) one can define the zeroth
order nonlinear coefficient of the waveguide �0 � �0000 ¼
~�0000, corresponding to the conventional definition used in
nonlinear fiber optics [11]. To first order in the Taylor
expansion in Eq. (2) one can define the coefficient �1 �
~�1000 ¼ ~�0100 ¼ ~�0010 ¼ ~�0001 ¼ �1000=ð!0t0Þ, associ-
ated with nonlinear convoluted fields �hpv that contain
only one time derivative of the envelope. Figure 2(a) shows
plots of �0 and �1 versus reference wavelength for the fiber
design of Fig. 1(a). The fiber GVD is shown in Fig. 2(b)
with blue dots. It is clear from this figure the well-known
fact that �0 decreases monotonically for longer wave-
lengths [14]. However, it is interesting to note that the
geometrical nonlinear coefficient �1 initially increases,
but then reaches a maximum near the infrared zero-GVD
point of the fiber (located at � ’ 2:4 �m), and then tends
to zero for even longer wavelengths. The close vicinity of
maxð�1Þ to the anomalous GVD of the fiber is an atypical

feature that we have found only in a few very specific
designs, including the one presented in Fig. 1(a). The
‘‘normal’’ situation, which is also true for circular PNs
surrounded by homogeneous media (such as, for instance,
tapered fibers), is that maxð�1Þ is located well within the
region of normal GVD [3]. Some of previously published
models take into account the frequency variation of the
effective area in the scalar approximation as small varia-
tions of the shock time [15]. Such models fail to recognize
that (i) polarization effects strongly modify the integrals in
Eq. (4), and thus the scalar model is completely inade-
quate for the description of PCF-NWs, and (ii) expression
of Eq. (1) must be intended more as a fit rather than a
Taylor expansion, due to the fact that solitons continuously
redshift along the nonlinear dispersion curve, so that all
orders are important in the expansion, so that the shock
time acquires a broadband dispersion that cannot be treated
with the methods of Ref. [15].
We now show that the onset of geometrical nonlineari-

ties leads to a strong suppression of the SSFS. In order to
do this, we compare two direct numerical simulations of
pulse propagation, the first one obtained by truncating the
expansion of Eq. (2) to the zeroth order (one nonlinear
convolution, corresponding to the conventional GNLSE)
[Fig. 3(a)], the second one obtained by truncating the same
sum to the second-order (15 nonlinear convolutions in
total), which thus takes into account the dominant terms
of the geometrical nonlinearities [Fig. 3(b)]. The density
plots of Figs. 3(a) and 3(b) are constructed by joining

(a) (b)
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FIG. 2 (color online). Linear and nonlinear data for the PCF
NW design of Fig. 1(a). (a) Blue solid and red dashed lines
indicate, respectively, �0 and �1 versus wavelength. (b) Blue
dots indicate the GVD of the waveguide, with zero-GVD points
located at � ’ 0:84 �m and � ’ 2:4 �m. Red solid line indi-
cates parameter r ¼ �1000=�0000, that appears in Eq. (6).
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FIG. 3 (color online). (a) Density plot (in logarithmic color
map with a 40 dB dynamic range density scale for intensities, as
in Ref. [16]) showing nonlinear evolution of a t0 ¼ 150 fs, P ¼
1 kW pulse in the waveguide of Fig. 1(a) according to Eq. (2)
truncated at the 0th order, i.e., by using the conventional
GNLSE. Second-order dispersion length is LD2 ’ 6 cm.
(b) Same as (a) but truncating Eq. (2) at the 2nd order.
Vertical white lines indicate the two zero-GVD wavelengths.
(c)–(e) z evolution of pulse duration 	 [t0 ¼ 	ð0Þ ¼ 30 fs], chirp
C, and soliton frequency shift � according to Eqs. (5)–(7), for a
N ¼ 7 soliton, pump wavelength � ¼ 1:4 �m. Blue solid (red
dashed) line refers to the case r ¼ 0 (r ¼ 0:2) in Eqs. (5)–(7).
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together hundreds of pulse spectra for discrete (but very
close) steps in the propagation, analogously to what is
done, e.g., in Fig. 3 of Ref. [16]. It is easily seen by
comparing Fig. 3(a) with Fig. 3(b) that the net effect of
the additional nonlinearities is to reduce considerably the
SSFS in the fiber. Thus a unique interplay between the
geometrical nonlinearities and the SSFS takes place in
properly designed PCF NWs.

It is possible to qualitatively understand the reason of the
above SSFS suppression mechanism by using the so-called
moment method, that keep tracks of the solitonic parame-
ters under the influence of small perturbations [11,17].
One assumes that after formation each solitonic pulse
does not change its functional shape, given by QðtÞ ¼
½Pt0=	�1=2sechð½t� T�=	Þe�i�ðt�TÞ�iCðt�TÞ2=ð2	2Þ, where T
is the temporal delay of the solitonic pulse, � is its
frequency detuning from the reference frequency !0, 	 is
the soliton pulse width, C is the pulse chirp, �2 ¼
ð@2�=@!Þ!¼!0

< 0 is the second-order (anomalous) dis-

persion coefficient, P � N2P0 is the peak power, P0 �
j�2jðt20�0Þ�1 is the fundamental (N ¼ 1) soliton power, N
is the soliton order, and TR � Rþ1

�1 tRðtÞdt is the first mo-
ment of the Raman response. One can prove that the z
evolution of 	, C, and � is then given by the following
closed set of equations:

d	

dz
¼ �2

C

	
; (5)

dC

dz
¼ 4j�2jN2


2t0	

��
1� t0

	

�
þ �

!0

ð1þ 4rÞ
�
; (6)

d�

dz
¼ � 8TRN

2j�2j
15t0

1

	3
; (7)

with the initial conditions 	ð0Þ ¼ t0, Cð0Þ ¼ �ð0Þ ¼ 0.
Higher-order terms in the dispersion and small terms pro-
portional to C2 have also been neglected for the sake of
clarity. Geometrical nonlinearities are parametrized by the
coefficient r � �1000=�0000, the only one that appears in
Eq. (6), shown in Fig. 2(b). Note that the condition r > 1=4
is necessary for the new nonlinearity to dominate the shock
term in Eq. (6). Eqs. (5)–(7) are written under the simplify-
ing assumption that the GVD does not change during the
soliton evolution, and that the pulse duration is longer than
100 fs, so that one can use a well-known approximate
expression for the Raman term [11]. The term on the
right-hand side of Eq. (7), proportional to TR, is respon-
sible for the constant SSFS along the fiber [7,17]. The rate
of this shift is very sensitive to the actual pulse width, since
it is determined by 	�3, and it is always directed towards
negative detunings, i.e., towards the red part of the spec-
trum. However, due to the action of the right-hand side of
Eq. (6), the soliton acquires a small chirp even if its initial
chirp vanishes. The slope of this chirp is initially negative,
due to the initial condition 	ð0Þ ¼ t0, which makes the

term proportional to �=!0 dominant. Thus C< 0 in the
initial stage of propagation, which in turn leads to a pulse
broadening due to Eq. (5), for which �2C> 0. Finally,
such broadening leads to a sharp suppression of the SSFS
given by Eq. (7), due to the 	�3 dependence of its right-
hand side. The long-term behavior of the propagation can
only be understood by numerically solving Eqs. (5)–(7). In
Figs. 3(c)–3(e) we show the z evolution of the quantities 	,
C, and� for parameters given in the caption. C undergoes
several deep oscillations, and its sign is mostly negative
throughout the whole propagation [Fig. 3(d)]. The pulse
duration 	 undergoes similar oscillations (with a smaller
magnitude), but overall it constantly grows [Fig. 3(c)].
�, however, is not too sensitive to such oscillations, due
to the fact that its derivative never changes sign in Eq. (7)
[Fig. 3(e)].
In conclusion, we have shown the emergence of a new

type of nonlinearity in tellurite PNs embedded in a PCF
cladding, which strongly depends on the geometrical pa-
rameters of the PCF design and the specific dispersion of
the core material.
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