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Quantum nondemolition (QND) measurement of collective variables by off-resonant optical probing

has the ability to create entanglement and squeezing in atomic ensembles. Until now, this technique has

been applied to real or effective spin one-half systems. We show theoretically that the buildup of Raman

coherence prevents the naive application of this technique to larger spin atoms, but that dynamical

decoupling can be used to recover the ideal QND behavior. We experimentally demonstrate dynamical

decoupling by using a two-polarization probing technique. The decoupled QND measurement achieves a

sensitivity 5.7(6) dB better than the spin projection noise.
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Quantum nondemolition measurement plays a central
role in quantum networking and quantum metrology for its
ability to simultaneously detect and generate nonclassical
quantum states. The original proposal by Braginsky [1] in
the context of gravitational wave detection has been gen-
eralized to the optical [2,3], atomic [4] and nanomechan-
ical [5] domains. In the atomic domain, QND by dispersive
optical probing of spins or pseudospins has been demon-
strated using ensembles of cold atoms on a clock transition
[6,7], and with polarization variables [8,9], but thus far
only with real or effective spin-1=2 systems.

QND measurement of larger spin systems offers a met-
rological advantage, e.g., in magnetometry [10], and may
be essential in novel proposals for quantum polarization
spectroscopy in spinor gases and the detection of exotic
quantum phases that intrinsically rely on large-spin sys-
tems [11–13]. Dispersive interactions with large-spin
atoms are complicated by the presence of non-QND-type
terms in the effective Hamiltonian describing the interac-
tion [14–16]. As we show in agreement with [17,18], these
terms prevent a pure QND measurement [1] for large-spin
ensembles even in the large-detuning limit, once consid-
ered free from the problem [19]. The non-QND terms
introduce noise into the measured variable, or equivalently
decoherence into the atomic state. The problem is serious
for both large and small ensembles, so that conventional
(naive) application of dispersive probing fails for several of
the above-cited proposals. Composite systems of two en-
sembles have demonstrated cancellation of the non-QND
effects [20]. In contrast, we show how non-QND terms can
selectively be turned off, to allow a pure QND measure-
ment of a true large-spin system.

We approach this problem using the methods of dynami-
cal decoupling [21–23], which allow us to effectively
cancel the non-QND terms in the Hamiltonian while re-
taining the QND term. To our knowledge, this is the first
application of this method to quantum nondemolition mea-
surements. Dynamical decoupling has been extensively

applied in magnetic resonance [24,25], used to suppress
collisional decoherence in a thermal vapor [26], to extend
coherence times in solids [27], in Rydberg atoms [28], and
with photon polarization [29]. Other approaches include
application of a static perturbation [17,30].
We consider an ensemble of spin-f atoms interacting

with a pulse of near-resonant polarized light. As described
in Refs. [14–16], the light and atoms interact by the effec-

tive Hamiltonian Ĥeff

�Ĥeff ¼ G1ŜzĴz þG2ðŜxĴx þ Ŝy ĴyÞ; (1)

where � is the duration of the pulse and G1;2 are coupling

constants that depend on the atomic absorption cross sec-
tion, the beam geometry, the detuning from resonance �,
and the hyperfine structure of the atom [31]. The atomic

variables Ĵ (described below) are collective spin and align-
ment operators. The light is described by the Stokes op-

erators Ŝ defined as Ŝi � 1
2 ðâyþ; ây�Þ�iðâþ; â�ÞT , where the

�i are the Pauli matrices and â� are annihilation operators
for the temporal mode of the pulse and circular plus or
minus polarization. Bold subscripts, e.g., x, are used to
label nonspatial directions for atomic and light variables.
The G1 term describes a QND interaction, while the G2

describes a more complicated coupling. In the dispersive,
i.e., far-detuned, regime, G1 and G2 scale as �

�1 and ��2,
respectively. It has sometimes been assumed that the G2

terms can be neglected for sufficiently large �, leaving an
approximate QND interaction. As we show below, this
scaling argument fails, and the G2 terms remain important.

We note an important symmetry: Ĥeff commutes with Ŝz þ
Ĵz, and is thus invariant under simultaneous rotation of Ĵ

and Ŝ about the z axis.

The atomic collective variables are Ĵk � �NA

i ĵðiÞk where

the superscript indicates the ith atom and ĵx�ðf̂2x� f̂2yÞ=2,
ĵy � ðf̂xf̂y þ f̂yf̂xÞ=2, ĵz � f̂z=2 and ĵ½x;y� �
�i½ĵx; ĵy� ¼ f̂zðf̂2 � f̂2z � 1=2Þ. These obey commutation

relations ½ĵz; ĵx� ¼ iĵy , ½ĵy ; ĵz� ¼ iĵx, ½ĵx; ĵy� ¼ iĵ½x;y�. For
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f ¼ 1=2, ĵx, ĵy and ĵ½x;y� vanish identically while for f ¼
1, ĵ½x;y� ¼ ĵz so that ĵx, ĵy , and ĵz describe a pseudospin ĵ.

In the QND scenario, an initial coherent polarization

state with hŜi ¼ ðNL=2; 0; 0Þ is passed through the en-
semble and experiences a rotation due to the G1 term

such that the component Ŝy (the ‘‘meter’’ variable) indi-

cates the value of Ĵz (the ‘‘system’’ variable). We assume

that hĴxi ¼ NA=2. For a weak pulse, i.e., for hŜi suffi-
ciently small, we have the �-linear input-output relations

ÂðoutÞ ¼ ÂðinÞ � i�½ÂðinÞ; Ĥeff�. Of specific interest are
Ĵ ðoutÞ
z ¼ ĴðinÞz þG2ŜxĴ

ðinÞ
y �G2Ŝ

ðinÞ
y Ĵx; (2)

Ĵ ðoutÞ
y ¼ ĴðinÞy �G1Ŝ

ðinÞ
z Ĵx �G2ŜxĴ

ðinÞ
½x;y�; (3)

Ŝ
ðoutÞ
y ¼ ŜðinÞy þG1ŜxĴ

ðinÞ
z �G2Ŝ

ðinÞ
z Ĵx; (4)

which describe the change in the system variable, its con-
jugate, and the meter variable. In the case of f ¼ 1=2, the
G2 terms vanish identically and we have a pure QND

measurement: information about Ĵz enters Ŝy and there is

a backaction on Ĵy , but not on Ĵz. The input noise

varðŜðinÞy Þ ¼ Sx=2 limits the performance of the measure-

ment, and corresponds to a spin sensitivity of �Ĵ2z ¼
ð2G2

1ŜxÞ�1. For comparison, the projection noise of an

x-polarized spin state is varðĴzÞ ¼ Jx=2, so that projection

noise sensitivity is achieved for Ŝx ¼ ðG2
1ĴxÞ�1 � SSNR.

This ideal QND regime does not occur naturally except

for f ¼ 1=2. In the interesting regime Ŝx � SSNR, we find

that G2ŜxĴy � ĴyðG2=G
2
1ÞĴx is independent of �, and

cannot be neglected based on detuning. To get an order
of magnitude, we note that for large detuning, G1 �
�0�=4A�,G2 � G1�HFS=� where �0 is the on-resonance
scattering cross section, A is the effective area of the beam,
and � and �HFS are the natural linewidth and hyperfine
splitting, respectively, of the excited states. In terms of the
on-resonance optical depth d0 � �0NA=A, we find
G2=G

2
1Jx � 8�HFS=d0�. In a typical experiment with ru-

bidium on the D2 line, �HFS=�� 30 and d0 � 50 [31], so
the contribution of this term is important.

In contrast, the last term in Eq. (2) and (4), respectively,

contribute variances hG2
2Ŝ

2
y Ĵ

2
xi and hG2

2Ŝ
2
zĴ

2
xiwhich scale as

��2. We will henceforth drop these terms.

The system variable Ĵz is coupled to a degree of free-

dom, Ĵy, which is neither system nor meter in the QND

measurement. This coupling introduces noise into the sys-
tem variable, and decoherence into the state of the en-
semble. To remove the decoherence associated with this

coupling G2ŜxĴy , we adopt the strategy of ‘‘bang-bang’’

dynamical decoupling [21–23]. In this method, a unitary

Ûb and its inverse Ûy
b are alternately and periodically

applied to the system p times during the evolution, so

that the total evolution is ½Ûy
bÛHðt=2pÞÛbÛHðt=2pÞ�p

where ÛHðtÞ describes unitary evolution under Ĥ for a
time t. With this evolution, those system variables that

are unchanged by Ûb continue to evolve under Ĥ, while
others are rapidly switched from one value to another,
preventing coherent evolution. For large p, the system

evolves under a modified Hamiltonian Ĥ0 ¼ P̂ Ĥ , where

P̂ projects onto the commutant of (i.e., the set of operators

which commute with) fÛb; Û
y
b g [23].

To eliminate G2ðŜxĴx þ Ŝy ĴyÞ, while keeping G1ŜzĴz
we choose a Ûb which commutes with Ĵz, but not with Ĵx
or Ĵy , namely, a� rotation about Ĵz, Ûb ¼ exp½i�Ĵz�. This
leaves Ĵz unchanged, but inverts Ĵx and Ĵy . By the sym-

metry of Ĥeff , this is equivalent to inverting Ŝx and Ŝy,

which suggests a practical implementation: probe with

pulses of alternating Ŝx, and define a meter variable taking

into account the inversion of Ŝy .

We consider sequential interaction of the ensemble with

a pair of pulses, with Ŝð1Þx ¼ �Ŝx ¼ NL=4p. We define also

the new meter variable ŜðdiffÞy � Ŝð1Þy � Ŝð2Þy . We describe

the atomic variables before, between, and after the two
pulses with superscripts (in), (mid), and (out), respectively.
We apply Eqs. (2)–(4) to find

Ĵ ðmidÞ
z ¼ ĴðinÞz �G2Ŝ

ð1Þ
x ĴðinÞy ; (5)

Ĵ ðmidÞ
y ¼ ĴðinÞy �G1Ŝ

ð1;inÞ
z Ĵx �G2Ŝ

ð1Þ
x ĴðinÞ½x;y�; (6)

Ŝ
ð1;outÞ
y ¼ Ŝð1;inÞy þG1Ŝ

ð1Þ
x ĴðinÞz ; (7)

and

Ĵ ðoutÞ
z ¼ ĴðinÞz ; (8)

Ŝ
ðdiff;outÞ
y ¼ Ŝðdiff;inÞy þ 2G1Ŝ

ð1Þ
x ĴðinÞz (9)

plus terms in G1G2ŜxŜzĴx, G2
2Ŝ

2
xĴ½x;y�, and G1G2Ŝ

2
xĴy

which become negligible in the limit of large p. The ideal
QND form is recovered by the dynamical decoupling. The
presence of the G2 term can be detected by noise scaling
properties. While in the ideal QND of Eqs. (8) and (9) the

variance of the system variable is / Ĵx giving a variance

for the meter variable linear in Ĵx, for the imperfect QND
of Eqs. (2)–(4) this is not the case: from Eq. (6), we see that

Ĵy acquires a backaction variance / Ĵ2x, which then is fed

into the system variable by the G2 term. This additional Ĵ2x
noise is also reflected in the meter variable, and provides a
measurable indication of G2.
We use the two-polarization decoupling technique to

perform QND measurement on an ensemble of �106 laser
cooled 87Rb atoms in the F ¼ 1 ground state. In the atomic
ensemble system, described in detail in Ref. [31], �s
pulses interact with an elongated atomic cloud and are
detected by a shot-noise-limited polarimeter. The experi-
ment achieves projection-noise limited sensitivity, as cali-
brated against a thermal spin state [9].
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The experimental sequence is shown schematically in
Fig. 1. In each measurement cycle the atom number NA is
first measured by a dispersive atom-number measurement

(DANM) [9]. A Ĵx-polarized coherent spin state (CSS) is
then prepared and probed with pulses of alternating polar-

ization to find the QND signal Ŝy � �iŝ
ðoutÞ
y;i ð�1Þiþ1.

Immediately after, hĴxi is measured to quantify depolar-
ization of the sample and any atoms having made transi-
tions to the F ¼ 2 manifold are removed from the trap,
reducing NA for the next cycle and allowing a range of NA

to be probed on a single loading. This sequence of state
preparation and probing is repeated 10 times for each
loading of the trap. The trap is loaded 350 times to acquire
statistics.

The optical dipole trap, formed by a weakly focused
(52 �m) beam of a Yb:YAG laser at 1030 nm with 6 Wof
optical power, is loaded from a conventional two stage
magneto-optical trap (MOT) during 4 s. Sub-Doppler cool-
ing produces atom temperatures down to 25 �K as mea-
sured in the dipole trap [31]. In the DANM, we prepare a

Ĵx-polarized CSS, i.e., all atoms in a coherent superposi-
tion of hyperfine states j " = #i � jF ¼ 1; mF ¼ �1i, by
optically pumping with vertically polarized light tuned to
the transition F ¼ 1 ! F0 ¼ 1, while also applying re-
pumping on the F ¼ 2 ! F0 ¼ 2 transition and a weak
magnetic field along x to prevent spin precession. The
atoms arrive to this dark state after scattering fewer than

two photons on average. To measure hĴxi, we send ten

circularly polarized probe pulses, i.e., with hŜzi ¼ NL=2,
tuned 190 MHz to the red of the transition F ¼ 1 ! F0 ¼
0. Each pulse, of 1 �s duration, contains 2:6� 106 pho-

tons and produces a signal hŜyi / G2hŜzihĴxi. The coherent

state for the QND measurement is prepared in the same
way, but in zero magnetic field.

To measure Ĵz, i.e., one-half the population difference
between j"i and j#i, we send probe pulses of either vertical
sx ¼ nL=2 or horizontal sx ¼ �nL=2 polarization through
the atomic sample and record their polarization rotation as

ŝðoutÞy;i . The probe light is detuned 600 MHz to the red of the

transition F ¼ 1 ! F0 ¼ 0. The number of individual
probe pulses is 2p and the total number of probe photons
NL ¼ 2pnL.
In Fig. 2 we plot the measured noise versus atom num-

ber, which confirms the linear scaling characteristic of the
QND measurement. The red squares indicate the variance

varðŜyÞ normalized to the optical polarization noise, mea-

sured in the absence of atoms. Independent measurements
confirm the polarimetry is shot-noise limited in this re-
gime. The black solid line is the expected projection-noise

scaling 4varðŜyÞ=NL ¼ 1þG2
1NLvarðĴzÞ, calculated from

the independently measured interaction strength G1 and
number of probe photons NL ¼ 8� 108. Spin polarized

atoms with hĴzi ¼ NA=2 and absorption imaging is used to
calibrate G1 [9]. The QND measurement achieves
projection-noise limited sensitivity; i.e., the measurement
noise is 5.7(6) dB below the projection noise.

FIG. 1 (color online). Experimental sequence for projection-
noise measurement. The CSS is prepared once and its magnitude
hĴxi is measured. This serves as a measure of the spin polariza-
tion prior to the QND probing. We prepare the CSS a second
time and assume it has the same spin polarization as in the first
preparation. The state is probed with a train of pulses of alter-
nating polarization. Measuring the spin polarization after the
QND measurement tells us the amount of depolarization intro-
duced in the QND probing. The QND probing scatters a non-
negligible fraction of atoms into F ¼ 2, which are removed from
the trap with resonant light in order to reduce the number of
atoms in the trap. The whole cycle is repeated 10 times during
one trap loading.

FIG. 2 (color online). Variance of polarimeter signal as a
function of atom number, comparing naive probing, i.e., a single
input polarization, to ‘‘bang-bang’’ dynamically decoupled prob-
ing of different orders p. Gray curves indicate simulation results
for: naive probing (solid), and decoupled probing with p ¼ 1
(widely dashed), p ¼ 2 (dashed), and p ¼ 5 (dotted). The black
solid line shows the expected projection noise for p ! 1, or the
ideal QND interaction G2 ¼ 0. All curves are calculated using
the independently measured interaction strengthG1 ¼ 1:27ð5Þ �
10�7 and have no free parameters. Red squares are measured
data using dynamical decoupling with p ¼ 5. Blue circles are
measured data with naive probing, which show a quadratic
scaling (dash-dotted line). Technical noise from laboratory fields
dominates the naive probing results, and pushes them above the
theoretical curve, while technical noise is suppressed in the two-
polarization probing.
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Also shown are results of covariance matrix calcula-
tions, following the techniques of reference [32], including
loss and photon scattering. The scenarios considered in-
clude the naive QND measurement, i.e., with a single
polarization, and the ‘‘bang-bang’’ or two-polarization
QND measurement, with p ¼ 1, 2, 5. These show a rapid
decrease in the quadratic component with increasing p.
This confirms the removal of G2 due to the dynamical
decoupling. Also included in these simulations is the

term Ŝy Ĵy which introduces noise into Ĵz proportional to

G2
2varðŜyÞhĴxi2. For our experimental parameters this term

leads to an increase of varðĴzÞ of less then 2% and as noted
above could be reduced with increased detuning.

The two-polarization probing also suppresses technical

noise which would otherwise enter into Ĵz through the

interaction G2ðŜxĴx þ Ŝy ĴyÞ. An imperfect preparation of

the atomic and/or light state, e.g., hĴyi � 0 or hŜyi � 0, can

causes classical noise in Ĵz.
Using dynamical decoupling techniques, we have dem-

onstrated optical quantum nondemolition measurement of
a large-spin system. We first identify an often-overlooked
impediment to this goal: the tensorial polarizability causes
decoherence of the measured variable and prevents (naive)
QND measurement of small ensembles. We then design an
appropriate two-polarization probing strategy to cancel the
tensorial components of the effective Hamiltonian and
implement it with an ensemble of �106 cold 87Rb atoms.
The dynamically decoupled QND measurement achieves a
sensitivity 5.7(6) dB better than the projection-noise level.
The technique will enable the use of large-spin ensembles
in quantum metrology and quantum networking, and per-
mit the QND measurement of exotic phases of large-spin
condensed atomic gases.
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