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We study the spectral narrowing induced by collisions in a dense cold atomic ensemble. We report on

experiments showing a prolongation of the coherence time of optically trapped 87Rb atoms as the density

increases, a phenomenon we call collisional narrowing in analogy to the motional narrowing effect in

NMR. We derive an expression for the new dephasing time scale in terms of the collision rate and the

inhomogeneous decay time. Remarkably, this time scale universally depends only on the atomic phase

space density.
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Atomic ensembles have many potential applications in
quantum information, from quantum memories [1,2]
through the creation of nonclassical states of light [3]
and long-distance quantum networks [4]. Owing to collec-
tive enhancement, working with ensembles at high den-
sities increases the overall efficiency of quantum
operations [5], but at the same time also increases the
collision rate and markedly changes the time dynamics
of stored coherence. In most applications it is desirable
that the atoms will be held in a conservative potential [6].
Such a potential always induces some inhomogeneity in
the energy difference between the internal states, which
leads to dephasing of the ensemble coherence [7].

Intriguingly, fluctuations in the atomic transition
frequency can prolong the coherence time—a phenomenon
called motional narrowing. Historically, motional narrow-
ing was first observed in liquid NMR, where a large
reduction in the width of spectral lines was observed
in comparison to solid NMR due to the thermal motion
of the nuclei [8]. Later the effect was reported in other
fields such as molecular physics [9], semiconductor
microcavities [10], and quantum dots [11]. Collisions-
induced narrowing of a Doppler-broadened spectrum in a
hot atomic ensemble (Dicke narrowing) was also observed
[12,13]. Here we study motional narrowing due to elastic
collisions (collisional narrowing) in a dense cold atomic
ensemble. In contrast to previous experiments, our appa-
ratus enables precise and independent control over the
thermodynamic parameters of the ensemble. Owing to
this, we are able to quantitatively analyze the dependence
of the narrowed linewidth on the fluctuations rate and
strength, and demonstrate an inverse linear dependence
on the former and quadratic dependence on the latter.
Remarkably, the narrowed linewidth exhibits universal
scaling with the atomic phase space density. Recently,
Deutsch et al. have demonstrated a different mechanism
to increase the coherence time of trapped atomic
ensembles in the opposite regime in which the velocity-
changing collisions rate is slower than all relevant time
scales [14].

We consider an ensemble of two level atoms in a trap,
with the two internal states designated j1i and j2i. The
effective single particle Hamiltonian is given by

Ĥ ¼ @½!0 þ �ðtÞ�j2ih2j þ @�ðtÞj2ih1j þ H:c:; (1)

where!0 is the free space transition frequency between the
states, �ðtÞ is the frequency detuning from resonance and
�ðtÞ is a classical external control field which is used for
state preparation and manipulation. Without external con-

trol fields, an atom with an initial superposition jc ð0Þi ¼
2�1=2ðj1i þ j2iÞ will evolve in the rotating frame into the

state jc ðtÞi ¼ 2�1=2ðj1i þ e�i�ðtÞj2iÞ, where the phase dif-
ference is given by �ðtÞ ¼ R

t
0 �ðtÞdt. Atoms at different

positions have different detunings due to differential en-
ergy shifts [15] or mean-field density dependent interaction
shifts [16]. The differential shifts are proportional to the
trapping potential, and therefore the detuning � is propor-
tional to the total energy of the atom [7]. Also, due to the
confining potential the atoms carry out oscillatory motion
in the trap [Fig. 1(a)]. When the oscillation period is
much shorter than the mean time between collisions (as
is the case in our experiment), the oscillating �ðtÞ can be
replaced by its value averaged over several oscillation
periods, ��ðtÞ.
Without collisions, the average detuning of each atom is

constant and therefore the relative phase, �, increases
linearly in time [Fig. 1(a)]. The inhomogeneous distribu-
tion of the detunings leads to a distribution of phases
expanding ballistically, and eventually to dephasing when
its width is on the order of �. Velocity-changing elastic
collisions randomize the energy of each atom without
affecting its internal states. The accumulated phase is
then a sum of random phases, and therefore the width of
the phase distribution grows only diffusively [Fig. 1(a)].
This means that at any given time the phase distribution is
narrower compared to the distribution without collisions
[Fig. 1(b)]. The connection between velocity-changing
elastic collisions in cold atomic ensembles and coherence
times longer than expected was first suggested in [16].
Inelastic collisions are not dealt with in the present work
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since their rate is below 1 s�1, slower than the relevant
time scales in our experiment [17].

We quantify the ensemble coherence with the function

RðtÞ ¼ jh�12ðtÞij
jh�12ð0Þij , where �12 is the off-diagonal element of

the reduced two-level density matrix [18]. In the experi-
ment, RðtÞ can be measured in a Ramsey-like experiment: a
short �=2 pulse produced by the external control field
prepares the atoms in a superposition jc i ¼ 1ffiffi

2
p ðj1i þ j2iÞ

followed by a waiting time, then a second �=2 pulse, and
finally a measurement of the population at j2i. The coher-
ence can be written as RðtÞ ¼ R1

�1 P�ðtÞ cos½��d�, where

P�ðtÞ is the ensemble phase distribution at time t. To solve

for RðtÞ, a specific physical model for the detuning process
��ðtÞ has to be assumed.
Such a model which was shown to describe well the

physics of cold collisions is the discrete spectral jumps
model [19], in which the detuning of each atom is constant
in between jumps, which occur at times following a
Poisson distribution. After each jump a new detuning is
drawn from a given time-independent distribution. The
coherence can be calculated exactly in this ‘‘strong colli-
sions’’ model [19,20]

~RðsÞ ¼ ~R0ðsþ �Þ
1� �~R0ðsþ �Þ ; (2)

where ~RðsÞ � LfRðtÞg is the Laplace transform of
the coherence, ��1 is the rate of jumps and R0ðtÞ is the
coherence without the jumps, calculated by taking the

Fourier transform of the detuning distribution. Note that
��1 is the detuning autocorrelation decay time, which for
cold atoms confined in a three-dimensional (3D) harmonic
potential relates to the conventionally defined collision rate

�col by � ¼ ~�col=2:7 [21]. Many times, and, in particular,
for atoms in a 3D harmonic trap, the inverse Laplace
transform cannot be written in terms of known functions,
and it is constructive to introduce a second model which
provides a good approximation to the discrete spectral
jumps model but whose solution can be written simply in
the time domain [19]. In this model, first solved by Kubo
[22], the detuning is a Gaussian process and the coherence
is given by RðtÞ ¼ exp½��2

��

R
t
0ðt� t0Þ�ðt0Þdt0�, where � ��

is the standard deviation of the detuning distribution and
�ðtÞ ¼ ��2

��
h ��ðtÞ ��ð0Þi is the normalized detuning correla-

tion function. Using �ðtÞ ¼ exp½��t� for the Poisson
collision process, we obtain the following expression for
the coherence:

RðtÞ ¼ e��2
��
��2ðe��tþ�t�1Þ; (3)

which is a generalized Gumbel function [23]. In the limit
t � ��1 Eq. (3) exhibits a Gaussian decay RðtÞ �
exp½�t2=�21� with an inhomogeneous decay time constant

�1 ¼
ffiffiffi
2

p
��1

��
. In the opposite limit, t � ��1, it has an

exponential decay RðtÞ � exp½�t=�2� with �2 ¼ ���2
��
.

The exponential decay is the hallmark of motional narrow-
ing resulting in a Lorentzian-shaped transition line where
the width is inversely proportional to the collision rate. For
non-Gaussian processes Eq. (2) can be used to generalize
this last relation into [19]

�2 ¼ ��2�col�
2
1; (4)

with � ¼ �1� �� being a number in the order of unity which
depends on the exact form of the detuning distribution, and
for atoms in a 3D harmonic trap is � � 1:69 (for more
details, see supplementary material [24]).
We study experimentally collisional narrowing with

cold 87Rb atoms trapped in a far-off-resonance laser with
a wavelength of 1:06 �m [see Fig. 1(c), and Ref. [24]).
The two internal states used are j1i ¼ jF ¼ 1;mf ¼ �1i
and j2i ¼ jF ¼ 2;mf ¼ 1i in the 52S1=2 manifold, which

are, to first order, Zeeman insensitive in the applied mag-
netic field of 3.2 G [16]. The thermodynamic parameters of
the cloud are measured using absorption imaging, and
combining this with the measured oscillation frequency
in the trap the collision rate is deduced. The external
control of the internal levels is done by means of a two
microwave-rf photons transition, and the detection is state
sensitive [25]. The spontaneous scattering rate is less than
1 s�1 and the trap lifetime is better than 5 s, both much
longer than the relevant time scales in the experiment. The
typical temperature in the experiment is T ¼ 2 �K, low
enough that we can approximate our Gaussian trap by a
harmonic potential. The typical density is � ¼ 1013 cm�3.
The atomic phase space density is smaller than 0.05
which means that the motion of the atoms in the trap can
be treated classically. Typical results of two Ramsey

FIG. 1 (color online). (a) The phase accumulation in ten
atomic realizations without collisions (upper graph) and with
collisions at a rate �col ¼ 10 s�1 (lower graph). The inset shows
small oscillations due to the fast oscillatory atomic motion in the
trap. Since the oscillation period is shorter than ��1

col , we shall

consider only the detuning averaged over several oscillations—
��ðtÞ. (b) Schematic graph of the phase distribution with and
without collisions at some arbitrary time. Both distributions have
the same mean value, but with collisions the distribution is much
narrower. (c) We laser cool 87Rb atoms and trap them in a
crossed laser beams configuration. We employ a state sensitive
detection scheme using a detection beam and a photomultiplier
tube (PMT), and measure the density and temperature using
absorption imaging and a CCD camera.
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experiments at low and high collision rates are depicted in
Fig. 2. For t < ��1

col the two envelopes have the same

Gaussian-like decay shape, but for longer times the enve-
lope of the Ramsey experiment with the higher collision
rate deviates and changes its form to an exponential-like
with a lower dephasing rate.

We fit the envelopes extracted from the Ramsey mea-
surements with the generalized Gumbel function defined in
Eq. (3) [see Fig. 2(c)]. We have carried out three sets of
experiments with different temperatures, in each of which
we have varied the density and extracted �2. The measured
temperature is used to calculate �1 for each data set. As
explained before, Eq. (3) is only an approximation to
Eq. (2), and to avoid systematic errors we correct the
extracted �2 with a factor calculated numerically before-
hand (for more details, see [24]). In Fig. 3(a) we plot the
extracted values of �2 for the three data sets, and as
predicted by Eq. (4), we get that it depends linearly on
the collision rate with a different slope for each tempera-
ture. An important consistency test is the comparison of the

value of �1 calculated from the slopes of the linear fits of
Fig. 3(a) to the value calculated directly from the tempera-
ture. We use the relation for a 3D harmonic trap ��1

��
¼

1:69�1 and Eq. (4) and find �1 ¼ 71� 18 ms, 47� 10 ms,
and 30� 6 ms for the data sets with temperatures of 1.7,
3.1, and 4:3 �K, respectively. These values of �1 are in
good agreement with the values �1 ¼ 73, 40, and 29 ms,
calculated from the measured temperatures. The origin of
axis is within the error margins of the three linear fits.
A striking universal scaling of �2 is revealed when

Eq. (4) is rewritten in terms of the system thermodynamic

parameters. The density of atoms can be written ��
�T3=2, where � is the phase space density, and T is the

temperature. The collision rate scaling is ~�col ¼ ��colvth

where �col is the collision cross section, and vth is the

average thermal velocity which is proportional to T1=2. For
low temperatures the collisions are s-wave scattering pro-
cesses and �col does not depend on density or temperature.

The scaling of the collision rate is therefore �col � �T1=2,
and when substituted into Eq. (4) we get �2 ��T2��2

��
. It

can be shown that � �� � T for any potential of the form
U� xn, and, in particular, this is the case for a harmonic
potential. The final result is that the narrowed linewidth
exhibits a universal scaling with the atomic phase space
density: �2 ��. The prefactor transforming this relation
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FIG. 2 (color online). Typical results of Ramsey experiments
with cold 87Rb atoms. Two short �=2 pulses are given, separated
by a time indicated by the x axis. The y axis is the normalized
population at j2i. The data presented here were taken for atoms
with a temperature of 1:7 �K, which gives a dephasing time of
�1 ¼ 73 ms [24]. The collision rates are (a) �col ¼ 3 s�1,
(b) �col ¼ 33 s�1, and graph (c) is a comparison of the envelopes
of the two experiments, normalized to begin at 1 [solid (blue)
line]. The dotted lines are fits to a Gumbel function, as defined
by Eq. (3). The �=2 pulse duration is �300 �s. The detuning of
the control field is 2�	 203 Hz, chosen such that the envelope
can be easily extracted. The envelopes are extracted by calculat-
ing the standard deviation of all points in a single Ramsey
oscillation and multiplying by

ffiffiffi
2

p
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FIG. 3 (color online). The exponential decay time �2 as a
function of the measured collision rate (a) and phase space
density (b) for three data sets with different temperature and
�1. The collision rate is the average collision rate in the cloud
and it is calculated from the measured density, temperature,
and oscillation frequency of the trap. The dotted lines are linear
fits to the data. The measured temperature is 1:7 �K (diamonds),
3:1 �K (circles), and 4:3 �K (squares).
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into equality is nonuniversal, however, and depends on the
elastic cross section and the coupling to the trapping laser.
In Fig. 3(b) we plot �2 of the same three experimental data
sets presented before versus the measured phase space
density. As predicted, all data points lie on a straight line.
We fit the data with a power law function �2 ¼ C�n and
find n ¼ 0:91� 0:19, in agreement with the expected
value of n ¼ 1. A linear fit yields a slope of �2=� ¼
1602� 285 ms in agreement with the calculated value of
1629 ms based on the trap parameters. All error margins
are given for a 95% confidence level.

To further support our findings we perform molecular
dynamics Monte Carlo simulations. We simulate separately
the classical Newtonian motion of 4000 atoms in the con-
fining potential. The atoms initial conditions are drawn
from a Boltzmann distribution assuming a temperature of
4 �K. The collisions are simulated by assuming a steady
state density profile to calculate each atom’s local probabil-
ity to undergo a collision. For any such collision, we cal-
culate the atom’s new velocity by assuming a virtual
counterpart with a velocity which is drawn according to a
probability distribution which depends on the velocity of the
first atom. We also assume instantaneous s-wave scattering
processes. We calculate the energy shift of the internal
states induced by the external potential along the trajectory
of each atom, and integrate this to obtain the accumulated
phase difference. Finally, we use the simulated phase dis-
tribution to calculate the coherence. The use of the local
density approximation in the simulation is justified since the
thermodynamic conditions are not changed during the ex-
periment. In Fig. 4 we plot the experimental results in a
dimensionless form, and find that they agree well both with
the theory and Monte Carlo simulations.

In summary, we have shown that velocity-changing elas-
tic collisions lead to phase diffusion and spectral narrowing
with a linewidth that universally depends only on the atomic
phase space density. Though in this Letter the atomic
ensemble is treated as an effective single spin system, the
effect of collisional narrowing is the same also for a many-
body symmetric superposition [24]. For practical applica-
tions, working with ensembles with a higher phase space
density trapped in a laser light with a larger detuning can
easily gain another factor of 10 in the coherence time. From
a theoretical point of view, collisional narrowing is unique
since the fluctuations arise from the system itself and not
due to contact with a noisy environment.
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FIG. 4 (color online). A comparison of the dimensionless
collisional narrowing time scale, �2=�1, versus the dimensionless
collision rate �col�1 for experimental data [(red) squares, (blue)
circles, and (black) diamonds], Monte Carlo simulations [(green)
triangles], and the theoretical prediction of Eq. (4) [(black)
dotted line].
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