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Jet vetoes are essential in many analyses at the LHC and Tevatron. Typical signals have a specific num-

ber of hard jets or leptons, while backgrounds have additional jets. Vetoing undesired jets efficiently dis-

criminates signal and background. For a sample with �N jets, the veto to give N energetic jets defines an

‘‘exclusive’’ N-jet cross section. This strongly restricts the phase space and causes large double logarithms

in perturbation theory that must be summed. Jet vetoes are typically implemented using jet algorithms,

yielding complicated phase-space restrictions, and reliance on leading-log parton-shower Monte Carlo

simulations. We introduce a global event shape ‘‘N jettiness’’ �N , which is defined for events withN signal

jets. Requiring �N � 1 constrains radiation between the signal jets and provides a theoretically well-

controlled jet veto. N jettiness yields a factorization formula with inclusive jet and beam functions.
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Introduction.—At the LHC or Tevatron, hard interac-
tions involving Higgs boson or new-physics particles are
identified by looking for signals with a characteristic num-
ber of energetic jets, leptons, or photons [1]. The back-
grounds come from standard model processes producing
the same signature of hard objects possibly with additional
jets. An example are top quarks decaying intoW plus b-jet,
which is a major background for H ! WW [2]. When
reconstructing masses and decay chains of new-physics
particles, additional jets can cause large combinatorial
backgrounds. Standard model processes can also fake a
signal when a jet is misidentified as a lepton or photon, a
typical example being H ! ��.

Thus, a veto on additional undesired jets is an effective
and sometimes necessary method to clean up the events
and discriminate signal and the various backgrounds. More
generally, one would like to measure an ‘‘exclusive’’ N-jet
cross section pp ! XLðNjÞ to produce N signal jets j,
where the remaining X contains no hard (central) jets.
Here, N � 0 and L denotes the hard leptons or photons
required as part of the signal.

We introduce an inclusive event shape ‘‘N jettiness,’’
denoted �N and defined below in Eq. (1). For an event with
at least N energetic jets, �N provides an inclusive measure
of how N-jet-like the event looks. In the limit �N ! 0 the
event contains exactly N infinitely narrow jets. For �N � 1
the event has hard radiation between the N signal jets.
Requiring �N � 1 constrains the radiation outside the
signal and beam jets, providing an inclusive way to veto
additional central jets. It yields an inclusive definition of an
exclusive N-jet cross section with a smooth transition
between the case of no jet veto, �N � 1, and the extremely
exclusive case �N ! 0.

Vetoing additional jets imposes a phase-space restriction
on the underlying inclusive N-jet cross section to produce
N or more jets with the same L. Irrespective of its precise
definition, the jet veto introduces a jet resolution scale �J

that characterizes this restriction, i.e., the distinction be-

tween N and N þ 1 jets. Hence, the exclusive N-jet cross
section contains phase-space logarithms �n

s ln
mð�2

J=�
2
HÞ,

where m � 2n and �H is the scale of the hard interaction.
For �N , �

2
J=�

2
H ’ �N � 1. Generically, there is always a

hierarchy �J � �H, which becomes larger the stronger
the restrictions are. These large logarithms must be
summed to obtain reliable predictions.
Jet vetoes are typically implemented by using a jet

algorithm to find all jets in the event and veto events
with too many energetic jets. Jet algorithms are good tools
to identify the signal jets. However, they are not neces-
sarily well-suited to veto unwanted jets, because the cor-
responding phase-space restrictions are complicated and
depend in detail on the algorithm. This makes it difficult to
incorporate the jet veto into explicit theoretical calcula-
tions and inhibits a systematic summation of the resulting
large logarithms. In this case, usually the only way to
predict the corresponding exclusive N-jet cross section is
to rely on parton-shower Monte Carlo simulations to sum
the leading logarithms (LL). For particular jet algorithms,
the resolution y23 defines the transition from 2 to 3 jets.
Next-to-leading logarithms for this and other hadron-
collider event shapes were summed in Ref. [3].
Vetoing jets by cutting on an inclusive variable like �N

has several advantages. First, we can go beyond LL order,
because the logarithms from the phase-space restriction,
�n
s ln

m�N , are simple enough to allow their systematic
summation to higher orders. Moreover, the theory predic-
tions with factorization can be directly compared with
experiment without having to utilize Monte Carlo simula-
tions for parton showering or hadronization. Experi-
mentally, �N reduces the dependence on jet algorithms
and might help improve the background rejection.
Definition.—N jettiness is defined as

�N ¼ 2

Q2

X
k

minfqa �pk;qb �pk;q1 �pk; . . . ;qN �pkg: (1)

As we discuss below, this definition of �N yields a facto-
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rization formula with inclusive jet and beam functions and
allows the summation of logarithms to next-to-next-
to-leading-logarithmic (NNLL) order. The sum over k in
Eq. (1) runs over the momenta pk of all measured (pseudo)
particles in the final state excluding the signal leptons or
photons in L. (Any other leptons or photons, e.g., from
hadronic decays, are included in the sum.) For simplicity,
we take all pk to be massless. The qa, qb, and q1; . . . ; qN
are a fixed set of massless reference momenta for the two
beams and the N signal jets:

q�a;b ¼ 1
2xa;bEcmn

�
a;b; n�a ¼ ð1; ẑÞ; n�b ¼ ð1;�ẑÞ;

q�J ¼ EJð1; n̂JÞ; J ¼ f1; . . . ; Ng: (2)

The EJ and n̂J correspond to the energies and directions of
theN signal jets (for both massive and massless jets). Their
choice is discussed below. The beam reference momenta
qa and qb are the large momentum components of the
colliding partons along the beam axis (taken to be the z
axis). They are defined by

xaEcm ¼ nb � ðq1 þ � � � þ qN þ qÞ (3)

and analogously for xb with a $ b. Here, q is the total
momentum of the nonhadronic signal L. In Eq. (1), Q2 ¼
xaxbE

2
cm is the hard interaction scale, and the distance of a

particle with momentum pk from the jets or beams is
measured by qm � pk. If L contains missing energy, so q
and xa;b are not known, one can use a modified distance

measure as we discuss below Eq. (11).
The minimum for each k in Eq. (1) associates the

particle with the closest beam or jet, appropriately dividing
the hadronic initial-state radiation (ISR) and final-state
radiation (FSR). Soft particles and energetic particles
near any jet or beam give only small contributions to the
sum. For 2 ! N scattering of massless partons, �N ¼ 0.
Energetic particles far away from all jets and beams give
large contributions. Hence, for �N � 1 the final state hasN
jets, two forward beam jets, and only soft radiation be-
tween them. In this limit xa;b are the momentum fractions

of the annihilated partons, and Y ¼ lnðxa=xbÞ=2 is the
boost of the partonic center-of-mass frame.

N ¼ 2 for eþe� ! jets.—In eþe� collisions there is no
hadronic ISR, so we drop the qa;b � pk entries in Eq. (1).

Now Q2 is the total invariant mass of the leptons and Y ¼
0. In the two-jet limit, the jet directions are close to the
thrust axis t̂, defined by the thrust T ¼ maxt̂

P
ijt̂ � ~pij=Q.

Hence we can choose

q�1 ¼ 1
2Qð1; t̂Þ; q�2 ¼ 1

2Qð1;�t̂Þ (4)

as reference momenta, and Eq. (1) becomes

�ee2 ¼ 1

Q

X
k

Ek minf1� cos�k; 1þ cos�kg; (5)

where �k is the angle between ~pk and t̂. The minimum
divides all particles into the two hemispheres perpendicu-
lar to t̂ as shown in Fig. 1(a). For �ee2 � 1, the total
invariant mass in each hemisphere is much smaller than
Q, so the final state contains two narrow jets. In this limit,
�ee2 ¼ 1� T, and a factorization theorem exists for
d�=d�ee2 , which can be used to sum logarithms of �ee2
[4]. For a given jet algorithm with resolution parameter
y, the value y23 marks the transition between 2 and 3 jets.
Thus requiring y23 � 1 also vetoes events with >2 jets.
N ¼ 0 for Drell-Yan.—Consider the isolated Drell-Yan

process, pp ! X‘þ‘� with no hard jets, shown in
Fig. 1(b). We now have ISR from the incoming partons,
but no FSR from jets. From Eq. (3) we have

xaEcm¼eþY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ ~q2T

q
; xbEcm¼e�Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ ~q2T

q
; (6)

where q2 and ~qT are the dilepton invariant mass and
transverse momentum, respectively, and Y equals the di-
lepton rapidity. Now, Q2 ¼ q2 þ ~q2T and Eq. (1) becomes

�0 ¼ 1

Q

X
k

j ~pkTjminfeY��k ; e�Yþ�kg; (7)

where j ~pkTj and �k are the transverse momentum and
rapidity of pk. The qa and qb dependence in Eq. (1)
explicitly accounts for the boost of the partonic center-
of-mass frame. For Y ¼ 0, the minimum in Eq. (7) divides
all particles into two hemispheres perpendicular to the
beam axis (analogous to t̂ above). For Y � 0, the hemi-
spheres are boosted with their boundary now at Y, and the
beam jet in the direction of the boost is narrower than
the other, as depicted in Fig. 1(b). Contributions to �0
from large rapidities are exponentially suppressed by

FIG. 1 (color online). Different situations for the application of N jettiness.
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j ~pkTje�j�kj � 2Eke
�2j�kj, so particles beyond the detec-

tor’s rapidity reach give negligible contributions.

Beam thrust [5] is given by �B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~q2T=q

2
q

�0. It is

obtained by choosing xa;bEcm ¼ ffiffiffiffiffi
q2

p
e�Y in case q2 and Y

are measured rather than the longitudinal components
na;b � q in Eq. (6). For �0 � 1 the hadronic final state

can contain only soft radiation plus energetic radiation in
the forward directions, so j ~qTj � Q and �B ¼ �0. A fac-
torization theorem for d�=d�B at small �B was derived and
used to sum logarithms of �B to NNLL in Ref. [5].

General case.—For pp ! XLðNjÞ we have both ISR
and FSR.We select candidate signal events by measuring L
and running a jet algorithm to find the N signal jets and
their momenta pJ. The conditions on the jets and L that
define the signal are encoded in the cross section by a
measurement function FNðfpJg; LÞ. Generically, FN will
enforce that there are at least N energetic jets that are
sufficiently separated from each other and the beams. We
now use the measured jet energies and directions to define
the massless reference momenta qJ in Eq. (2):

EJ ¼ p0
J; n̂J ¼ ~pJ=j ~pJj; (8)

while qa and qb are given by Eqs. (2) and (3).
Taking the minimum in Eq. (1) combines the previous

cases in Eqs. (5) and (7). It divides all particles into jet and
beam regions that are unique for a given set of reference
momenta and whose union covers all of phase space, as
illustrated in Fig. 1(c). The boundary between any two
neighboring regions is part of a cone and is such that the
sum of the total invariant masses in the regions is mini-
mized (or in the case of a beam region the virtuality of the
incoming colliding parton).

For events with small �N all jet algorithms should agree
how energetic radiation is split up between the jets and
beams and differ only in their treatment of softer particles.
Thus, they all give the same n̂J and EJ up to power
corrections, while the split up of the soft radiation is
determined by �N itself. Hence, the dependence of �N on

the jet algorithm is formally power suppressed: �
alg:1
N ¼

�alg:2N þOð�2NÞ, as seen in Eq. (14) below.
To measure �N , we still rely on having a suitable jet

algorithm to find the N signal jets but not more so than if
we were not measuring �N . Imagine the jet size in the
algorithm is chosen too small such that the algorithm
divides what should be a single signal jet into several
narrow jets [6]. In this case, the jet algorithm yields a
poorly reconstructed signal irrespective of measuring �N .

Since the jet veto is now provided by �N , this situation
can be avoided because we do not have to rely on the jet
algorithm to identify additional jets and so can use an
algorithm that can be forced to always yield at most N
jets. This is in fact the most natural thing to do when one is
looking for N jets. Therefore, using �N as a jet veto could
also help improve the signal reconstruction.

Generalizations.—We can generalize �N to

�dN ¼ X
k

minfdaðpkÞ; dbðpkÞ; d1ðpkÞ; . . . ; dNðpkÞg; (9)

where dmðpkÞ can be any infrared-safe distance measure.
In Eq. (1), dmðpkÞ ¼ 2qm � pk=Q

2, with

2qa � pk ¼ j ~pkTjQeY��k ;

2qJ � pk ¼ j ~pkTjj ~qJTjð2 cosh��Jk � 2 cos��JkÞ:
(10)

Here, ��Jk and ��Jk are the rapidity and azimuthal
distances between qJ and pk, respectively. If these are
small, the factor in brackets reduces to the familiar R2 ¼
ð��Þ2 þ ð��Þ2.
Different measures that are boost-invariant along the

beam axis can be obtained by modifying the dependence
on rapidity, j ~qJTj, andQ in Eq. (10). A geometric measure,
which is independent of j ~qJTj, is

daðpkÞ ¼ j ~pkTj
Q

eY��k; dbðpkÞ ¼ j ~pkTj
Q

e�Yþ�k ;

dJðpkÞ ¼ j ~pkTj
Q

ð2 cosh��Jk � 2 cos��JkÞ:
(11)

It evenly divides the area rather than invariant mass be-
tween neighboring regions, such that more energetic jets
also get more invariant mass.
If L contains missing energy, then xa;b in Eq. (3) and

thus Q and Y are not known. For Q, one can use any hard
scale, like the j ~qJTj of the hardest jet or leave it out, since it
serves only as an overall normalization. In the beam mea-
sures da;bðpkÞ we can simply set Y ¼ 0, which defines

them in the hadronic center-of-mass frame.
N jettiness does not split events into N, N þ 1, N þ 2,

etc., jets like a traditional jet algorithm. But we can con-
sider using �N to define an ‘‘exclusive N-jet algorithm’’ as
follows: First, we use a geometric measure and find the
directions n̂J and boost Y that minimize �N , analogous to
finding t̂ for eþe� ! jets. This might actually allow one to
get an estimate of Y even in the case of missing energy by
exploiting the asymmetry in the beam jets. Second, we
determine the jet energies by summing over the particles in
each jet region. (To reduce the sensitivity to the underlying
event and pileup, one can weigh the sum over energies by
the distance from n̂J.)
Factorization formula.—We now use �N again as de-

fined in Eq. (1). For �N � 1, QCD ISR and FSR can be
described in soft-collinear effective theory [7] at leading
power by N þ 2 independent sectors for collinear particles
close to each qm with m ¼ fa; b; Jg and a separate sector
for soft particles. By power counting, J-collinear particles
are closest to qJ, so for the J-collinear sectorX

k2collJ

min
m

f2qm � pkg ¼
X

k2collJ

2qJ � pk ¼ sJ; (12)

where (up to power corrections) sJ is the total invariant
mass in the J-collinear sector. Similarly, the sum over the
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beam collinear sectors yields the total (transverse) virtual-
ity of the colliding partons ta and tb. Therefore,

�NQ
2 ¼ ta þ tb þ

X
J

sJ þ
X

k2soft

min
m

f2qm � pkg: (13)

The sum in the last term is now restricted to the soft sector.
Combining Eq. (13) with the analyses in Refs. [5,8] yields
the factorization formula for N jettiness [9]:

d�

d�N
¼

Z
dxadxb

Z
d4q d�LðqÞ

Z
d�NðfqJgÞFNðfqmg; LÞ

	 ð2	Þ4
4

�
qa þ qb �

X
J

qJ � q

�

	X
ij;�

trĤij!�ðfqmg; L;�ÞY
J

Z
dsJ J�J

ðsJ; �Þ

	
Z

dta Biðta; xa; �Þ
Z

dtb Bjðtb; xb; �Þ

	 Ŝij!�
N

�
�N �

ta þ tb þ
P
J
sJ

Q2
; fqmg; �

�
: (14)

Here, Ĥij!�ðfqmg; LÞ contains the underlying hard interac-
tion iðqaÞjðqbÞ ! LðqÞ�1ðq1Þ . . .�NðqNÞ, where i, j, and
�J denote parton types, and the sum over ij; � is over all
relevant partonic channels. It is a matrix in color space
given by the IR-finite parts (in pure dimensional regulari-
zation) of the squared partonic matrix elements in each
channel. The N-body phase space for the massless mo-
menta qJ is denoted d�nðfqJgÞ and that for L by d�LðqÞ.

The inclusive jet and beam functions J�J
ðsJÞ and

Bi;jðta;b; xa;bÞ, respectively, describe the final- and initial-

state radiation emitted by the outgoing and incoming par-
tons from the hard interaction. The latter also determine the
momentum fractions xa;b of the colliding partons and are

given by parton distribution functions fi0 ð�;�Þ as [5,10]

Biðt; x; �Þ ¼ X
i0

Z 1

x

d�

�
I ii0

�
t;
x

�
;�

�
fi0 ð�;�Þ: (15)

The I ii0 are perturbative coefficients describing collinear
ISR, and at tree level Biðt; x; �Þ ¼ 
ðtÞfiðx;�Þ. The last
term in Eq. (13) is the contribution to �N from soft particles
in the underlying event. It is described by the soft function

Ŝij!�
N ð�softN ; fqmgÞ, which depends on the jet’s angles n̂l � n̂m

and energy fractions El=Em. Like Ĥ, it is a color matrix,

and the trace in Eq. (14) is over trðĤ ŜÞ.
In Eq. (14), all functions are evaluated at the same

renormalization scale �. Large logarithms of �N in

d�=d�N are summed by first computing Ĥð�HÞ, Jð�JÞ,
Bð�BÞ, and Ŝð�SÞ at the scales �H ’ Q, �J ’ �B ’ffiffiffiffiffiffi
�N

p
Q, and �S ’ �NQ, where the functions contain no

large logarithms, and then evolving them to the scale �.
This evolution is known analytically [11], and the required
anomalous dimensions are already known to NNLL [5,12],

because we have inclusive jet and beam functions. NNLL
also requires the Oð�sÞ corrections for each function,
which are known for J and B. The Oð�sÞ hard function
is determined by the one-loop QCD matrix elements. For

�N 
 �QCD=Q, Ŝð�SÞ can be computed perturbatively

and will be given in a future publication.
We thank C. Lee, K. Tackmann, and J. Thaler for com-

ments and discussions. This work was supported by the
Office of Nuclear Physics of the U.S. Department of
Energy, under Grant No. DE-FG02-94ER40818.

[1] G. L. Bayatian et al. (CMS Collaboration), J. Phys. G 34,
995 (2007); ATLAS Collaboration, Report No. CERN-
LHCC-99-15, 1999.

[2] T. Aaltonen et al. (CDF and D0 Collaboration), Phys. Rev.
Lett. 104, 061802 (2010).

[3] A. Banfi, G. P. Salam, and G. Zanderighi, J. High Energy
Phys. 08 (2004) 062; arXiv:1001.4082.

[4] G. P. Korchemsky and G. Sterman, Nucl. Phys. B555, 335
(1999); S. Catani et al., Nucl. Phys. B407, 3 (1993); T.
Becher and M.D. Schwartz, J. High Energy Phys. 07
(2008) 034.

[5] I.W. Stewart, F. J. Tackmann, and W. J. Waalewijn, Phys.
Rev. D 81, 094035 (2010); arXiv:1002.2213.

[6] This can be tested by comparing the total energy in each
region defined by �N with the energy from the jet algo-
rithm. If these are very different, but at the same time �N is
small, then there are additional energetic particles near the
signal jets that the algorithm should have included.

[7] C.W. Bauer, S. Fleming, and M. E. Luke, Phys. Rev. D 63,
014006 (2000); C.W. Bauer et al., Phys. Rev. D 63,
114020 (2001); C.W. Bauer and I.W. Stewart, Phys.
Lett. B 516, 134 (2001); C.W. Bauer, D. Pirjol, and
I.W. Stewart, Phys. Rev. D 65, 054022 (2002); C.W.
Bauer et al., Phys. Rev. D 66, 014017 (2002).

[8] C.W. Bauer, A. Hornig, and F. J. Tackmann, Phys. Rev. D
79, 114013 (2009).

[9] Here, FN enforces distinct collinear sectors with 1� n̂l �
n̂m 
 �N and Em=Q 
 �N . We assume FN depends only
on the large components qJ of the jet momenta, pJ ¼
qJ½1þOð�NÞ�, and that L only couples to the QCD
subprocess via a hard interaction. We also assume that
Glauber gluons do not spoil this factorization.

[10] S. Fleming, A.K. Leibovich, and T. Mehen, Phys. Rev. D
74, 114004 (2006).

[11] M. Neubert, Eur. Phys. J. C 40, 165 (2005); S. Fleming
et al., Phys. Rev. D 77, 114003 (2008); Z. Ligeti, I.W.
Stewart, and F. J. Tackmann, Phys. Rev. D 78, 114014
(2008).

[12] G. P. Korchemsky and A.V. Radyushkin, Nucl. Phys.
B283, 342 (1987); S. Moch, J. A.M. Vermaseren, and A.
Vogt, Nucl. Phys. B688, 101 (2004); G. Kramer and B.
Lampe, Z. Phys. C 34, 497 (1987); 42, 504(E) (1989);
R. V. Harlander, Phys. Lett. B 492, 74 (2000); S.M. Aybat,
L. J. Dixon, and G. Sterman, Phys. Rev. D 74, 074004
(2006); A. Ferroglia et al., J. High Energy Phys. 11 (2009)
062.

PRL 105, 092002 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

27 AUGUST 2010

092002-4

http://dx.doi.org/10.1088/0954-3899/34/6/S01
http://dx.doi.org/10.1088/0954-3899/34/6/S01
http://dx.doi.org/10.1103/PhysRevLett.104.061802
http://dx.doi.org/10.1103/PhysRevLett.104.061802
http://dx.doi.org/10.1088/1126-6708/2004/08/062
http://dx.doi.org/10.1088/1126-6708/2004/08/062
http://arXiv.org/abs/1001.4082
http://dx.doi.org/10.1016/S0550-3213(99)00308-9
http://dx.doi.org/10.1016/S0550-3213(99)00308-9
http://dx.doi.org/10.1016/0550-3213(93)90271-P
http://dx.doi.org/10.1088/1126-6708/2008/07/034
http://dx.doi.org/10.1088/1126-6708/2008/07/034
http://dx.doi.org/10.1103/PhysRevD.81.094035
http://dx.doi.org/10.1103/PhysRevD.81.094035
http://arXiv.org/abs/1002.2213
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://dx.doi.org/10.1016/S0370-2693(01)00902-9
http://dx.doi.org/10.1016/S0370-2693(01)00902-9
http://dx.doi.org/10.1103/PhysRevD.65.054022
http://dx.doi.org/10.1103/PhysRevD.66.014017
http://dx.doi.org/10.1103/PhysRevD.79.114013
http://dx.doi.org/10.1103/PhysRevD.79.114013
http://dx.doi.org/10.1103/PhysRevD.74.114004
http://dx.doi.org/10.1103/PhysRevD.74.114004
http://dx.doi.org/10.1140/epjc/s2005-02141-1
http://dx.doi.org/10.1103/PhysRevD.77.114003
http://dx.doi.org/10.1103/PhysRevD.78.114014
http://dx.doi.org/10.1103/PhysRevD.78.114014
http://dx.doi.org/10.1016/0550-3213(87)90277-X
http://dx.doi.org/10.1016/0550-3213(87)90277-X
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.030
http://dx.doi.org/10.1007/BF01679868
http://dx.doi.org/10.1007/BF01548458
http://dx.doi.org/10.1016/S0370-2693(00)01042-X
http://dx.doi.org/10.1103/PhysRevD.74.074004
http://dx.doi.org/10.1103/PhysRevD.74.074004
http://dx.doi.org/10.1088/1126-6708/2009/11/062
http://dx.doi.org/10.1088/1126-6708/2009/11/062

