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We derive the Markovian description for the nonequilibrium Brownian motion of a heated nanoparticle

in a simple solvent with a temperature-dependent viscosity. Our analytical results for the generalized

fluctuation-dissipation and Stokes-Einstein relations compare favorably with measurements of laser-

heated gold nanoparticles and provide a practical rational basis for emerging photothermal tracer and

nanoparticle trapping and tracking techniques.
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Brownian motion is the erratic motion of suspended
particles that are large enough to admit some hydrody-
namic coarse-graining, yet small enough to exhibit sub-
stantial thermal fluctuations. Such mesoscopic dynamics is
ubiquitous in the micro- and nanoworld, and, in particular,
in soft and biological matter [1,2]. Since their first formu-
lation more than a century ago [3], the laws of Brownian
motion have therefore found so many applications and
generalizations in all quantitative sciences that one may
justly speak of a ‘‘slow revolution’’ [4]. In Langevin’s pop-
ular formulation they take the simple form of Newton’s
equation of motion for a particle of mass m and radius R
subject to a drag force��0p=m and a randomly fluctuating
thermal force �ðtÞ:

_pþ �0p=m ¼ � ðt > 0Þ: (1)

As a cumulative representation of a large number of
chaotic molecular collisions � is naturally idealized as a
Gaussian random variable. Its variance is tied to the Stokes
friction coefficient

�0 ¼ 6��0R (2)

in a solvent of viscosity �0 such as to guarantee consis-
tency of the averages h. . .i over force histories �ðtÞ with
Gibbs’ canonical ensemble, namely,

h�ðtÞi ¼ 0; h�iðtÞ�jð0Þi ¼ 2kBT0�0�ij�ðtÞ: (3)

This prescription implements the fluctuation-dissipation
theorem for the system comprising the Brownian particle
and its solvent at temperature T0. Strictly speaking, in view
of how it deals with long-ranged and long-lived corre-
lations arising from conservation laws governing the sol-
vent hydrodynamics, this practical and commonplace
Markovian description applies only asymptotically for
late times [5,6]. Corresponding corrections to Eqs. (2) and
(3) have recently been analyzed with single-particle tech-
niques in nanostructured environments [7,8].

Thanks to its prominent role in the ‘‘middle world’’ [2]
between the macro- and microcosmos, and its experi-
mental and theoretical controllability, Brownian motion

has become the ‘‘drosophila’’ for formulating and testing
new (and sometimes controversial) developments in equi-
librium and nonequilibrium statistical mechanics [9–15].
In this Letter, we introduce a nonequilibrium generaliza-
tion that has so far received little attention, namely, the
Brownian motion of a particle maintained at an elevated
temperature Tp > T0. From its hypothetical sibling (‘‘cool

Brownian motion’’, Tp < T0) such ‘‘hot Brownian motion’’

(HBM) is distinguished by having obvious realizations
of major technological relevance such as nanoparticles
suspended in water and diffusing in a laser focus. Because
of a time-scale separation between heat conduction and
Brownian motion, these particles carry with them a radially
symmetric hot halo. This increases the contrast for detec-
tion by a second laser, which provides the basis for prom-
ising photothermal particle tracking [16] and correlation
spectroscopy (‘‘PhoCS’’) [17–19] methods with a high
potential of complementing corresponding fluorescence
techniques [20] in numerous applications. But the heating
also gives rise to increased diffusivities [19], a phenome-
non that might affect other nanoparticle trapping and track-
ing setups, too [21–24]. The development of an accurate
theoretical description of hot Brownian motion therefore
becomes a crucial prerequisite for attaining quantitative
control over these emerging technologies. This is not an
entirely straightforward task (as some might suggest [25])
and requires an extension of the familiar theory, as
explained in the following. We arrive at simple analytical
generalizations of Eqs. (2) and (3), which should be suffi-
ciently accurate for most practical applications.
For clarity, we restrict the following discussion to an

idealized situation: a hot spherical Brownian particle of
radius R at the center of a comoving coordinate system in a
solvent with a temperature-dependent viscosity �ðTÞ that
attains the value �0 at the ambient temperature T0 imposed
at infinity. Favorable conditions are assumed, such that
potential complications resulting from long-time tails [8],
convection [26], thermophoresis [27], etc., can be ne-
glected. We do however distinguish the solvent tempera-
ture Ts at the hydrodynamic boundary corresponding to the
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particle surface from the particle temperature Tp itself,

as these may differ substantially [28]. It is the tempera-
ture difference�T � Ts � T0 that determines the heat flux
responsible for the nonequilibrium character of the prob-
lem. On relevant time scales, the resulting temperature
field around the particle follows from the stationary heat
equation, i. e.

TðrÞ ¼ T0 þ R�T=r: (4)

The task of finding appropriate generalizations of Eqs. (2)
and (3) under these conditions is split into two steps
corresponding to the two force terms in Eq. (1), the damp-
ing and the driving force, or friction and thermal noise,
respectively.

The first goal is mainly technical, namely, to generalize
Eq. (2) by solving

r � u ¼ 0; rp ¼ r � �ðrÞ½ruþ ðruÞT� (5)

for the stationary fluid velocity field uðrÞ under the usual
no-slip boundary condition. The new feature compared to
Stokes’ classical derivation is the radially varying viscosity
�ðrÞ resulting from Eq. (4). A numerically precise solution
of Eq. (5) can be obtained with a differential shell method
[29] along the lines of similar work for inhomogeneous
elastic media [30]. However, for our present purposes, as
well as for practical applications, we wish to find a gen-
erally applicable analytically tractable approximation. We
therefore resort to a toy model that evades the technical
difficulties related to the vector character of the fluid
velocity but retains the long-ranged nature of the hydro-
dynamic flow field [31]. We replace uðrÞ by a fictitious
diffusing scalar uðrÞ without direct physical significance,
for which Eq. (5) is readily solved analytically. More
explicitly, Eq. (5) reduces to r � �ðrÞruðrÞ ¼ 0 in the
scalar model. A separation ansatz uðrÞ ¼ urðrÞu#ð#Þ leads
to the radial equation

½@r þ 2=rþ ð@r ln�Þ�@rur ¼ 0 (6)

solved by @rur / ð�r2Þ�1 for physically reasonable func-
tions �ðrÞ. The quantities ur and�@rur are now interpreted
as the analogue of the fluid velocity and the hydrodynamic
drag force per area, respectively. The generalized effective
friction coefficient �HBM of hot Brownian motion is then
estimated up to a numerical factor as their ratio, disregard-
ing the contribution from the angular part. A comparison
with Eq. (2) in the isothermal limiting case of constant
viscosity�ðrÞ ¼ �0 helps to calibrate the model and fix the
undetermined numerical factor, which is then taken over to
situations with radially varying �ðrÞ. The accuracy of this
procedure can be assessed and further improved by a
comparison with analytical and numerical results from
the aforementioned differential shell method [29]. Some
technical details are provided in [32] and the result is
summarized in Fig. 1.

An analytically tractable expression for the effective
friction coefficient �HBM as a function of temperature
finally results from a combination of the calibrated model
with Eq. (4) and a phenomenological expression for the
temperature dependence of the solvent viscosity such as

�ðTÞ ¼ �1 exp½A=ðT � TVFÞ� (7)

(e.g. for water). The effective friction can be reinterpreted
in terms of an effective solvent viscosity �HBM �
�HBM=6�R that replaces �0 in Eq. (2) under nonisothermal
conditions. For reduced temperature increments � �
�T=ðT0 � TVFÞ< 1 the result is well approximated by
its truncated Taylor series [32]
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This provides the wanted generalization of Eqs. (1) and (2).
To turn Eqs. (1)–(3) into a fully predictive Markov

model of hot Brownian motion, the remaining task is to
compute, from both the viscosity and temperature profiles,
�ðrÞ and TðrÞ, the appropriate effective temperature THBM

that accounts for the modified spectrum of thermal forces
in the vicinity of the particle and replaces T0 in Eq. (3). In
other words, we aim at establishing a generalized nonequi-
librium fluctuation-dissipation relation for Brownian mo-
tion in a comoving radial temperature gradient. In analogy
to the better understood situation in globally isothermal
nonequilibrium steady states [33], we expect to retrieve
the fluctuation-dissipation relation only after excluding
the ‘‘housekeeping heat‘‘ from the entropy balance; i.e.,
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FIG. 1 (color online). Effective viscosity �HBM (scaled to the
value for water at � ¼ 1) for exemplary long-ranged radial vis-
cosity profiles �ðrÞ with � � �0=�ðr ¼ RÞ in a parameter re-
gime of potential practical interest. Analytical predictions of the
scalar toy model are compared to numerical results from the
differential shell method (symbols). While the simplest version of
the model (dashed lines), which employs a constant calibration
factor, exhibits noticeable systematic errors, the more elaborate
version (solid lines), should be sufficiently accurate for practical
applications. The lowest solid curve corresponds to Eq. (8).
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the heat constantly flowing from the particle to infinity to
maintain the temperature gradient. All we have to consider
is the minuscule excess dissipation associated with the
damped motion of the Brownian particle. In this respect,
it is crucial to appreciate the long-range correlated char-
acter of the hydrodynamic flow, which affects both dissi-
pation and thermal fluctuations. It also helps in setting up a
systematic coarse-grained calculation by extending the
standard framework of fluctuating hydrodynamics [34] to
moderate temperature gradients [29].

As pointed out by Einstein [3], the process of Brownian
motion can be understood as a detailed balance of antago-
nistic fluxes. In particular, energy is continuously trans-
ferred from the solvent to the particle and vice versa; i.e., it
is transformed from thermal into kinetic energy and back.
In a stationary situation the mutual energy transfer must be
balanced to obey the first law. Moreover, to obey the
second law, it must not cause a net average entropy change,
which was the origin of major reservations against the
modern interpretation of Brownian motion till the early
20th century. More precisely, the spatial integral over the
local excess dissipation _qðrÞ—i.e., the heat created (per
unit of time) by the solvent flow at position r in response to
the movement of the Brownian particle—must on average
match the rate of kinetic energy transfer _Wp to the particle,

h _Wpi ¼
Z

drh _qðrÞi: (9)

And, to respect the second law, one has to require that the
integral over the local entropy flux to the solvent—i.e., the
local dissipation rate _qðrÞ divided by the local solvent
temperature TðrÞ—equals on average the entropy flux
_Sp ¼ _Wp=THBM conferred to the Brownian particle:

Z
dr

h _qðrÞi
TðrÞ ¼ 1

THBM

Z
drh _qðrÞi: (10)

This then defines the wanted effective Brownian tempera-
ture THBM, if the dissipation _qðrÞ is expressed in terms of
the local viscosity �ðrÞ and ruðrÞ. Within our scalar
model _qðrÞ ¼ 2�ðrÞf@rurðrÞg2 [32], hence

THBM ¼
Z

dr�ðrÞhð@rurÞ2i
�Z

dr
�ðrÞ
TðrÞ hð@rurÞ

2i: (11)

Note that both the viscosity and temperature profiles,
�ðrÞ and TðrÞ, enter explicitly. For the special case of
a temperature-independent constant viscosity �0 this re-
duces to the simple explicit expression

THBM ¼ �T= lnð1þ �T=T0Þ: (12)

The analytical expression generalizing this to the main
case of interest, a viscosity �ðrÞ that varies radially accord-
ing to Eqs. (4) and (7), is given in Ref. [32]. For small tem-
perature increments�T � T0 a practical approximation is

THBM � T0 þ�T=2� ½1� lnð�0=�1Þ��T2=ð24T0Þ:
(13)

A hot Brownian particle described by Eqs. (2) and (3)
with �0 and T0 replaced by the corresponding effective
quantities �HBM and THBM from Eqs. (8) and (13) performs
a random diffusive motion characterized by an effective
diffusion coefficient DHBM obeying the generalized
Stokes-Einstein relation

DHBM ¼ kBTHBM

6��HBMR
: (14)

This prediction is tested against the numerical differential
shell method in the inset of Fig. 2. The good agreement
demonstrates the equivalence of Eqs. (10) and (11).
In order to test Eq. (14) also experimentally, we used a

photothermal microscopy setup with gold nanoparticles in
water, as described in Refs. [19,32]. Particles passing
through the common focal volume of a heating and a
detection laser beam leave a trace of photothermal bursts
in the detector, which encodes information about the dif-
fusivity. The spatially inhomogeneous heating power in the
laser focus implies, via Eq. (14), that the diffusion in the
focus is inhomogeneous [35]. We therefore pursue a first-
passage time approach to determine the apparent effec-
tive diffusion coefficient �DHBM of inhomogeneous hot
Brownian motion from the burst durations, which we
identify with the transit times of the particles passing
through the focus volume [32]. The time periods � during
which the photothermal signal supersedes a fixed percent-
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FIG. 2 (color online). The effective diffusion coefficient
�DHBMð�T̂Þ of hot gold nanoparticles traversing a Gaussian laser
focus in water: experimental data (open/closed symbols for R ¼
20=30 nm) versus analytical predictions from the scalar model
(solid lines); �T̂ is the surface temperature increment for a
particle in the center of the focus (see main text); for solvent
and focus parameters and the error bars see Ref. [32]. Inset:
DHBMð�TÞ for homogeneous HBM according to numerical
predictions from the differential shell method (squares), analyti-
cal solutions of the scalar model (corresponding to the lowest
pair of curves in Fig. 1), and the naive suggestion to identify the
HBM parameters with the conditions at the particle surface
(dotted); the agreement between the symbols and the solid line
demonstrates the equivalence of Eqs. (10) and (11).
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age of the maximum signal at a given laser power are
recorded for a large number of photothermal bursts. The
diffusion coefficient is then extracted from the exponential
decay of the obtained transit time distribution Pð�Þ at large
� [36,37],

lnPð� ! 1Þ / � �DHBM�: (15)

Figure 2 shows the result of such measurements for various

laser powers. The surface temperatures T̂s ¼ T0 þ�T̂ for
particles at the center of the laser focus have been calcu-
lated from known quantities, namely, the incident laser
intensity, the optical absorption coefficient of the particles,
and the heat conductivity of the solvent [19]. Because of
our limited knowledge of the focus geometry, the factor of
proportionality in Eq. (15) could not be determined pre-
cisely, though. We therefore took the liberty to multiply
each data set by an overall factor to optimize the fit [32].
Yet, the good agreement of the functional dependence with
the prediction provides strong support for our analytical
results, over a considerable temperature range. At the same
time, it establishes hot Brownian motion as a manageable
tracer technique.

In summary, by introducing appropriate effective fric-
tion (viscosity) and temperature parameters �HBM (�HBM)
and THBM, for which we provided explicit analytical ex-
pressions in Eqs. (8) and (13), the convenient Markovian
description of Brownian motion in terms of Eqs. (2) and (3)
could be extended to nonequilibrium conditions, where the
temperature of the Brownian particle differs from that of
the solvent. While Eqs. (2) and (3) are recovered in the iso-
thermal limit, the general predictions differ significantly
from what might have been guessed from simple rules of
thumb and provide an instructive illustration of the general
dictum that hydrodynamic boundary conditions should not
be confused with the microscopic conditions at the bound-
ary [25]. We sidestepped some technical difficulties of the
corresponding problem in fluctuating hydrodynamics by
introducing an analytical toy model that we calibrated with
more elaborate analytical and numerical calculations.
Our analytical prediction for the effective diffusion coeffi-
cient, based on the generalized Stokes-Einstein relation in
Eq. (14), compares favorably with our measurements of
gold nanoparticles depicted in Fig. 2 and thus provides a
convenient basis for photothermal tracer and particle trap-
ping and tracking techniques with a high potential of
complementing corresponding fluorescence-based meth-
ods applied in many fields from nanotechnology to
biology.

We acknowledge helpful discussions with A. Würger,
and financial support from the Deutsche Forschungs-
gemeinschaft (DFG) via FOR 877.

*kroy@itp.uni-leipzig.de
[1] E. Frey and K. Kroy, Ann. Phys. (Leipzig) 14, 20 (2005).

[2] M. Haw, Middle World: The Restless Heart of Matter and
Life (Macmillan, New York, 2006).

[3] A. Einstein, Ann. Phys. (Berlin) 322, 549 (1905).
[4] M. Haw, Phys. World 18, 19 (2005).
[5] J. A. McLennan, Introduction to Non-Equilibrium

Statistical Mechanics (Prentice Hall, Englewood Cliffs,
1988).

[6] P. Keblinski and J. Thomin, Phys. Rev. E 73, 010502
(2006).

[7] S. Martin, M. Reichert, H. Stark, and T. Gisler, Phys. Rev.
Lett. 97, 248301 (2006).

[8] S. Jeney et al., Phys. Rev. Lett. 100, 240604 (2008).
[9] V. Blickle et al., Phys. Rev. Lett. 96, 070603 (2006).
[10] V. Blickle et al., Phys. Rev. Lett. 98, 210601 (2007).
[11] J. R. Howse et al., Phys. Rev. Lett. 99, 048102 (2007).
[12] F. Ritort, Adv. Chem. Phys. 137, 31 (2008).
[13] J. Dunkel and P. Hänggi, Phys. Rep. 471, 1 (2009).
[14] D. Speer, R. Eichhorn, and P. Reimann, Phys. Rev. Lett.

102, 124101 (2009).
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