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We introduce a new disorder regime for directed polymers in dimension 1þ 1 by scaling the inverse

temperature � with the length of the polymer n. We scale �n :¼ �n�� for � � 0. This scaling

interpolates between the weak disorder (� ¼ 0) and strong disorder regimes (�> 0). The fluctuation

exponents � for the polymer end point and � for the free energy depend on � in this regime, with � ¼ 0

corresponding to the Kardar-Parisi-Zhang polymer exponents � ¼ 2=3, � ¼ 1=3, and � � 1=4 corre-

sponding to the simple random walk exponents � ¼ 1=2, � ¼ 0. For � 2 ð0; 1=4Þ the exponents

interpolate linearly between these two extremes. At � ¼ 1=4 we exactly identify the limiting distribution

of the free energy and the end point of the polymer.
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Directed polymers in disordered media are a model of a
great variety of physical phenomena ranging from vortex
lines in superconductors [1], domain walls [2], roughness
of crack interfaces [3], to Burgers turbulence [4] and the
Kardar-Parisi-Zhang (KPZ) growth models [5]. Starting
with [2,6], they have been the subject of intensive study
[7,8] over the last 25 years. In the simplest setting, the
statistics of directed polymers is described by a random
probability distribution on the set of nearest neighbor
random walks on the d-dimensional lattice. The random-
ness of the polymer statistics is related to a time-dependent
random potential Vði; sÞ which is given by an independent
identically distributed (i.i.d.) collection of random varia-
bles placed on the sites of the (dþ 1)-dimensional integer
lattice. We assume that the V have mean zero and variance
one. For a fixed realization of the disorder V (quenched
disorder case), the energy of an n-step nearest neighbor
walk S is

HnðSÞ ¼
Xn
i¼1

Vði; SiÞ:

Let Znð�; xÞ be the point-to-point partition function

Znð�; xÞ ¼ ð2dÞ�n
X

S:Sn¼x

e��HnðSÞ;

and Znð�Þ be the full partition function which is the sum of
the point-to-point versions over x:

Znð�Þ ¼ ð2dÞ�n
X
S

e��HnðSÞ ¼ X
x

Znð�; xÞ:

The distribution density for the polymer end point is thus

��
n ðxÞ ¼ Znð�; xÞ=Znð�Þ:

The main goal is to study the asymptotic behavior of the
free energy and the polymer end point as n ! 1, and as �
and d vary. At� ¼ 0 the polymer is just the simple random
walk; hence, it is entropy dominated and diffusive. For �

large the polymer distribution localizes on paths of low
energy and is no longer diffusive. A more precise separa-
tion between the two regimes is given in terms of the
quenched and annealed free energies:

Fqð�Þ ¼ lim
n"1

1

n
logZnð�Þ � lim

n"1
1

n
logZnð�Þ ¼ �ð�Þ:

Weak disorder corresponds to equality. The transition be-
tween weak and strong disorder occurs at a critical �c. For
d ¼ 1 and 2, �c ¼ 0, while 0<�c � 1 for d � 3 [9].
The main contribution of this Letter is to show that in d ¼
1 one can observe a rich variety of different regimes
interpolating between the weak and strong disorder by
scaling the inverse temperature � with the length of the
polymer n. We set �n :¼ �n��, 0 � � � 1=4. Below we
define the critical exponents and determine their values as
� varies. It turns out that the asymptotic statistics are most
interesting in the critical case � ¼ 1=4.
The behavior of the polymer is traditionally described in

terms of fluctuation exponents for the polymer end point
and the free energy: for the thermal average, hS2ni � n2�

and Varð logZnð�ÞÞ� n2�. For (1þ 1)-dimensional poly-
mers there are long-standing predictions: � ¼ 2=3 and
� ¼ 1=3 for all �> 0. These are the classical KPZ scal-
ings [5,10]. Observe that � ¼ 2=3 and � ¼ 1=3 satisfy the
relation � ¼ 2� � 1, which is expected to hold whenever
the polymers are localized. The fluctuations of the free
energy are given by the asymptotic distributions for lead-
ing eigenvalues of random matrices. For example, in the
point-to-point case, the fluctuations are given by the GUE
Tracy-Widom distribution [11] FGUE. More is true. After
normalization, the collection of partition functions pa-
rametrized by the renormalized target point x converges
to a universal stationary process called Airy2 which has
FGUE as one-dimensional marginals; [12],

logZnð�;n2=3sÞ�c1ð�Þnþc2ð�Þn1=3ðAiry2ðsÞ�að�Þs2Þ;
(1)
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where að�Þ is a positive constant which compensates for a
convex dependence of the free energy on the target point.

We also introduce the localization length exponent �:

hS2ni � hSni2 � n2�:

In the strong disorder case � ¼ 0 for typical environments;
i.e., the polymer is localized. This does not contradict the
fact that the variance averaged over environments is of
order n [13]. For a few environments of total probability

of order n�1=3, hS2ni � hSni2 is of order n4=3. This explains
the apparent discrepancy.

We now turn our attention to the ‘‘�-polymers’’ case
with rescaled inverse temperature �n :¼ �n��. For differ-
ent values of � � 0 they behave in ways that are quantifi-
ably different from each other. For �> 1=4 the polymer is
diffusive and behaves as a simple random walk, with

ffiffiffi
n

p
fluctuations of the path, i.e., � ¼ 1=2, � ¼ 1=2. The poly-
mer, rescaled by

ffiffiffi
n

p
, converges to Brownian motion with

diffusivity constant 1 for almost all environments. As in the
case � ¼ 0, the exponent � ¼ 0. For 0 � � � 1=4 the
exponents � , �, and � depend on � as

�ð�Þ¼ 2
3ð1��Þ; �ð�Þ¼ 1

3ð1�4�Þ; �ð�Þ¼2�; (2)

linearly interpolating between the KPZ scaling at � ¼ 0
and the diffusive exponents � ¼ 1=2, � ¼ 0, � ¼ 1=2 at
� ¼ 1=4. Note that the values of �ð�Þ and �ð�Þ still satisfy
�ð�Þ ¼ 2�ð�Þ � 1. The leading behavior of logZnð�n��Þ
is of order n1�2�.

To derive these exponents we use the values of the
critical exponents at � ¼ 0 together with the Airy process
asymptotics of the point-to-point partition function. Let
En ¼ hSni and assume for the moment that n2� is of
smaller order than En. This assumption means that most
of the contribution to the fluctuations of the free energy
comes from paths with an end point in a neighborhood of
En. To leading order, the logarithm of the number of such
paths is �E2

n=n and from (1) each path contributes energy

on the order of n1=3��½Airy2ðEn=n
2=3Þ � Airy2ð0Þ� to

logZnð�;EnÞ, so that the log of the point-to-point partition
function at En is

� E2
n

n
þ n1=3��½Airy2ðEn=n

2=3Þ � Airy2ð0Þ�: (3)

The polymer end point favors the value of En which max-
imizes (3). We obtain

E2
n � n4=3��½Airy2ðEn=n

2=3Þ � Airy2ð0Þ�:
It follows that En is of a smaller order than n2=3, and since
on small distances the Airy2 process is similar to the

Wiener process we have Airy2ðEn=n
2=3Þ � Airy2ð0Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jEnj=n2=3
q

. Hence

E2
n � n1��

ffiffiffiffiffiffiffiffiffi
jEnj

q
;

which gives jEnj � nð2=3Þð1��Þ. Substituting this back into
(3) implies that the fluctuations of the free energy are on

the order of nð1=3Þð1�4�Þ, which gives the formula for �ð�Þ.
The localization length exponent is determined by the
condition that the difference between logarithms of the
point-to-point partition function with end points separated
by the localization length n� should be of order 1. For

distances jx1 � x2j � n�ð�Þ this difference is of order

n1=3��½Airy2ðx1=n2=3Þ � Airy2ðx2=n2=3Þ�;
which is of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2

p
n��. This is of order 1 only if

�ð�Þ ¼ 2�. We immediately see that for �< 1=4 the
polymer is localized (� < �).
Using the Wiener process approximation the limiting

distribution for the pair

�
logZnð�n; xn

�ð�ÞÞ � logZnð�n; 0Þ
c�;�n

�ð�Þ ;
Sn

C�;�n
�ð�Þ

�
(4)

is the joint distribution of the maximum valueM ofWðtÞ �
t2 and the point tM where the maximum is achieved. Here
WðtÞ is a two-sided Brownian motion. This probability
distribution was calculated exactly in [14]. The joint den-
sity of (tM, M) at (t, a) is gðjtjÞhaðjtjÞc að0Þ, where g has
Fourier transform ĝð�Þ ¼ R

ei�sgðsÞds ¼ �Aiði��Þ�1, ha
has Laplace transform

ĥ að�Þ ¼
Z 1

0
e��shaðsÞds ¼ Aið�aþ �ÞAið�Þ�1;

and c aðxÞ has Fourier transform ĝð�Þ ¼ R
ei�sgðsÞds ¼

�Aiði��Þ�1, and c aðxÞ has Fourier transform
ĉ að�Þ ¼ 	�ðAiði��ÞBiði��þ �aÞ

� Biði��ÞAiði��þ �aÞÞ

with � ¼ 2�1=3, � ¼ 22=3. Here Ai and Bi are the Airy
functions [15].
We verify the formulas for �ð�Þ and �ð�Þ by numerical

simulations. See Fig. 1 for results.
Critical regime.—In the critical case � ¼ 1=4 the local-

ization length is on the same order as the displacement of
its end point (� ¼ �). The polymer is not localized any-
more and the previous argument breaks down, although the
exponents are still correct. The limiting distribution of the
polymer end point is more involved but still computable.
Notice that since �ð1=4Þ ¼ 0 we do not require any nor-
malization. Consider the modified partition function

Z�
nð�n; xÞ ¼ 2�n

X
S:Sn¼x

Yn
i¼1

ð1þ �n�ð1=4ÞVði; SiÞÞ:

Expanding the product and summing over all n-step paths

ending at x yields Z�
nð�n; xÞ ¼ 2�n

P
n
k¼0 �

kn�k=4Jnk ðxÞ,
where
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Jnk ðxÞ ¼
X

pn
xðik; xkÞ

Yk
j¼1

Vðij; xjÞpðij � ij�1; xj � xj�1Þ:

Here pði; yÞ ¼ PðsðiÞ ¼ yÞ for a simple random walk start-
ing at zero, pn

xðik; xkÞ ¼ pðn� ik; x� xkÞ, and the sum is
over ordered 1 � i1 < . . .< ik � n with i0 ¼ 0, and xj,

1 � j � k, with x0 ¼ 0. For fixed k,

2�nn�k=4Jnk ðx
ffiffiffi
n

p Þ=pðn; x ffiffiffi
n

p Þ ! 2kIkðxÞ=%ð1; xÞ;
in distribution where IkðxÞ is given by

Z
%xðtk; xkÞ

Yk
i¼1

Wðti; xiÞ%ðti � ti�1; xi � xi�1Þdtidxi:

(5)

Here Wðt; xÞ is a Gaussian white noise with

Wðt;xÞWðs;yÞ¼
ðt�sÞ
ðx�yÞ, %ðx; tÞ ¼ expf�x2=2tg=ffiffiffiffiffiffiffiffi
2	t

p
, %xðtk; xkÞ ¼ %ð1� tk; x� xkÞ, and the integration

is over f0 ¼ t0 < t1 < . . . tk � 1g � Rk with x0 ¼ 0. The

n�k=4 term keeps the variance of order 1, and the 2k terms
come from the local central limit theorem for simple
random walk. In the case k ¼ 1 the convergence is easily
seen by a Fourier transform computation. By the assump-
tion that the random potential V has zero mean value and

variance one, we have logei�V ¼ � 1
2�

2ð1þ oð1ÞÞ as

� ! 0. Hence

log½expfitn�ð1=4ÞJn1 ðx
ffiffiffi
n

p Þ=pðn; x ffiffiffi
n

p Þg�

¼ � t2�2

2
ð1þ oð1ÞÞn�1=2

Xn
i¼1

X
y

qxnði; yÞ2 ! � 2t2�2ffiffiffiffi
	

p :

Here qxnði; yÞ ¼ pði; yÞpðn� i; x
ffiffiffi
n

p � yÞ=pðn; x ffiffiffi
n

p Þ.
Therefore the limiting distribution is normal with mean
zero and variance 4�2=

ffiffiffiffi
	

p
, as is 2I1ðxÞ=%ð1; xÞ. For k > 1,

the convergence is handled by the general theory of
U-statistics [16].

From these computations we conclude that
Z�
nð�n; x

ffiffiffi
n

p Þ=pðn; x ffiffiffi
n

p Þ converges to the process

Z ð�; xÞ ¼ X
k�0

ð2�ÞkIkðxÞ=%ð1; xÞ; (6)

where IkðxÞ are given by (5). The same convergence also
holds replacing Z� by Z. Define the process A�ðxÞ ¼
logZð�; xÞ � log%ð1; xÞ. This process is universal; it ap-
pears as a limit in the critical regime for polymer models
with different distributions for the random potentials V.
The statistics of the density function of the scaled polymer
end point SðnÞ= ffiffiffi

n
p

are the same as the statistics of the
random density function

C� expfA�ðxÞ � x2=2g: (7)

A�ðxÞ interpolates between a Gaussian process (� ¼ 0)

and the Airy2 process (� ¼ 1). To see this crossover one
has to properly rescale the process with � to normalize the
variance of its one-point distribution and its two-point
correlation function at a fixed distance. The interpolation
property follows from [17–19], where an exact formula for
the one-point distribution of A�ðxÞ was computed (see also

[20]),

P fA�ðxÞ� sg¼
Z
e�e�r

fðsþ2�=3� log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32	�4

q
�rÞdr

where,

fðrÞ ¼ ��1 detðI � KÞtrððI� KÞ�1PAiryÞ
with � ¼ 2�4=3, PAiryðx; yÞ ¼ AiðxÞAiðyÞ, and

Kðx; yÞ ¼
Z
ð1� e��tÞ�1Aiðxþ tÞAiðyþ tÞdt:

It follows that PfA�ðxÞ � 2�4=3sg ! FGUEðsÞ. Finally, the
process A�ðxÞ is continuous and locally Brownian.

The limiting distribution is also characterized [17,18] by
observing that Zð�; xÞ is the Wick exponential of a sto-
chastic integral. Let B be a one-dimensional Brownian
motion that is independent of the white noise Wðt; xÞ. Let
h�ix;T be the Wiener path integral over paths starting at zero

and ending at x at time T. Define

Z ðT;�; xÞ ¼
�
: exp:

�
2�

Z T

0
Wðs; BðsÞÞds

��
x;T

: (8)

By Brownian scaling, ZðT;�; xÞ is equal in distribution to

T�1=2Zð1; T1=4�; T�1=2xÞ, and expanding the exponential
we see that Zð�; xÞ from (6) is the same as Zð1; �; xÞ from
(8). The continuum point-to-line partition function
Z‘ðT;�Þ is obtained by dropping the restriction that
BðTÞ ¼ x in (8).
In the critical regime � ¼ 1=4, the discrete polymer

scales to the continuum random polymer with weights
with respect to the standard Wiener path integral given
formally by the integrand in (8).

FIG. 1 (color online). Results of numerical computation of
�ð�Þ and �ð�Þ for 500 independent copies of the environment
and polymer length n ¼ 5000. We fixed � ¼ 1 and let � vary
from 0 to 0.275 in increments of 0.025. The environment
distribution was chosen to be Gaussian. The dotted line corre-
sponds to the predicted exponents (2).
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Writing h�iT;� for the new path integral, (8) provides

another derivation of the fluctuation exponents �ð�Þ and
�ð�Þ. Setting � ¼ T�� and making the change of varia-
bles u ¼ T�4�s gives, by standard Brownian scaling,

Z ðT; T��; xÞ 	 ZðT1�4�; 1; xT�2�Þ; (9)

in the sense of equality in distribution, so that integrating
out the end point X, Z‘ðT; T��Þ 	 Z‘ðT1�4�; 1Þ. The re-

lation Varð logZ‘ðT;�ÞÞ� T2=3 then shows that

Var ð logZ‘ðT; T��ÞÞ� Tð2=3Þð1�4�Þ;

which agrees with �ð�Þ. For �ð�Þ we realize

hB2
TiT;� ¼

Z 1

�1
x2ZðT;�; xÞ�ðT; xÞdx� T4=3:

Setting � ¼ T�� we get from (9)

hB2
TiT;T�� ¼

Z 1

�1
x2ZðT; T��; xÞ�ðT; xÞdx� Tð4=3Þð1��Þ:

Note that h�ðT; xÞ ¼ � logZðT;�; xÞ satisfies the KPZ

equation

@Th� ¼ �1
2ð@xh�Þ2 þ 1

2@
2
xh� þ �W:

From (7), in the critical disorder regime, the polymer end
point deposits itself on the real line according to the height
of the KPZ interface.

In terms of physical applications, most, though not all,
models have an adjustable parameter which can be scaled
as we have done to obtain the intermediate disorder re-
gimes. An example where this is not the case is the poly-
nuclear growth model [21]. A positive example is the
original motivation for the directed polymer model, do-
main walls in the two dimensional random field Ising
model, which models pinning by impurities. One studies
it at low temperature starting with a wall betweenþ and�.
The strength of the random field can be adjusted and
corresponds to the rescaled temperature in our random
polymer model. Domain walls are modeled by the polymer
paths. In d ¼ 1þ 1, the exponents � ¼ 2=3, � ¼ 1=3 are
well established numerically. When the adjustable parame-
ter is present, one can obtain the intermediate disorder
regimes as the appropriately chosen asymptotics. The con-
tinuum random polymer is a universal limit at the critical
weak scaling. Therefore one can now understand fluctua-
tions of these models in this asymptotic regime, and, in
particular, see the explicit transition from Gaussian behav-
ior, with diffusive exponents, to the non-Gaussian, coupled
behavior, with nondiffusive exponents.

Summarizing, we have identified a new disorder regime
for directed polymers in (1þ 1) dimensions and computed
the wandering exponent � and free energy fluctuation
exponent �, in addition to the localization length exponent
�. At � ¼ 1=4 the exponents are diffusive but the fluctua-

tions are strongly coupled to the disorder variables V and
are non-Gaussian, converging to the Tracy-Widom distri-
butions for large �. For �> 1=4 the disorder is weak. For
all �> 0 we are able to identify the joint limiting distri-
bution of the free energy and the polymer end point with a
new, universal limiting density C� expfA�ðxÞ � x2=2g.
There is an explicit asymptotic formula for the distribution
of the point-to-point free energy at � ¼ 1=4, as well as for
the rescaled polymer end point. We believe these construc-
tions will provide a valuable tool for studying anomalous
fluctuations in (1þ 1) dimensions.
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