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Using a three-frequency one-dimensional kicked rotor experimentally realized with a cold atomic gas,

we study the transport properties at the critical point of the metal-insulator Anderson transition. We

accurately measure the time evolution of an initially localized wave packet and show that it displays at the

critical point a scaling invariance characteristic of this second-order phase transition. The shape of the

momentum distribution at the critical point is found to be in excellent agreement with the analytical form

deduced from the self-consistent theory of localization.
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Different phase transitions observed in various fields of
physics often share similar characteristics [1]. Of special
interest is the behavior of the system at the critical point
(for example, scale invariance) and in its immediate vicin-
ity (e.g., divergence of a characteristic length scale). The
advent of cold atom physics has offered new possibilities
of direct experimental observation of such characteristics
of quantum phase transitions. In this Letter, we show that
the Anderson metal-insulator transition (recently observed
with atomic matter waves [2]) obeys scale invariance at the
threshold, defining a new state of matter between a metal
and an insulator.

The Anderson transition takes place in three-
dimensional (3D) disordered noninteracting systems in
the mesoscopic regime (where the transport is coherent).
It involves a metallic phase at low disorder associated with
an essentially diffusive transport, and an insulating phase at
large disorder where transport over long distance is inhib-
ited by interference effects: This is the so-called Anderson
localization phenomenon [3]. The Anderson transition is a
second-order (continuous) phase transition: On the insulat-
ing side, the localization characteristic length ‘ diverges
algebraically, ‘ / jK � Kcj�� when K, the control pa-
rameter, approaches the threshold Kc of the transition.
On the metallic side, similarly, the diffusion constant van-
ishes algebraically D / jK � Kcjs. The critical exponents
s and � are equal in 3D, and universal (they do not depend
on the microscopic details of the system) [4]. Only recently
have these theoretical predictions been confirmed experi-
mentally and the value of � ¼ s unambiguously deter-
mined [2,5,6]: � ¼ 1:4� 0:3 is found perfectly
compatible with � ¼ 1:57� 0:02 obtained from numerical
simulations of the 3D Anderson model [7].

The state of a disordered system is, in this context,
characterized by its transport properties. One can consider
the behavior at large distances and long times of the (dis-
order) averaged intensity Green function (AIGF) which
determines the probability Pðr; r0; tÞ for a particle to go
from r to r0 in time t [8]. In the insulating phase, the AIGF

is a stationary function exponentially localized:

Pðr; r0; tÞ � expð�jr� r0j=2‘Þ ½localized�; (1)

while in the metallic regime, it is a Gaussian expanding
diffusively:

Pðr; r0; tÞ � exp½�ðr� r0Þ2=2Dt� ½diffusive�: (2)

These two behaviors are, however, long time asymptotics.
Indeed, a localized AIGF is observed only for times t � t‘,
where t‘ is the localization time (the time scale associated
to localization). At the transition, t‘ � ‘3 diverges, imply-
ing that there is no characteristic time scale; in other words,
the system presents a temporal scale invariance. This also
implies that the AIGF at the critical point obeys a spatio-
temporal scaling law, which is (see below):

Pðr; r0; tÞ � exp½��jr� r0j3=2=t1=2� ½critical�; (3)

where � is a known (measurable) quantity. This defines a
new state, since the shape does not change with time. Such
a state of matter, intermediate between an insulator and a
metal at any time, has never been directly observed experi-
mentally, although interesting results have recently been
published for ultrasound waves in the localized regime [9].
The purpose of this Letter is to report the first experimental
characterization of such a critical state of the Anderson
transition.
In cold atomic gases, it is possible to prepare the system

in a localized state and follow its evolution over time; this
constitutes an experimental measurement of the (A)IGF
[2,10,11], which is impossible to achieve in state of the art
solid state physics. Observing the 3D Anderson transition
in configuration space with cold atoms requires a disor-
dered potential with a correlation length comparable to the
de Broglie wavelength [12] which has not yet been
achieved. Using a spatially quasiperiodic—i.e., nonran-
dom—potential, a metal-insulator transition (slightly dif-
ferent from the Anderson transition) has been predicted
and experimentally observed [13].
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We have recently shown [2,5] that it is nevertheless
possible to observe Anderson localization and the
Anderson transition in momentum space by using a differ-
ent system, the atomic kicked rotor (described below),
where the chaotic nature of the classical motion replaces
the disordered potential.

Our atom-optics system (see [5] for a detailed descrip-
tion) consists in a cloud of laser-cooled cesium atoms
(FWHM of the momentum distribution of 8@kL) interact-
ing with a pulsed (period T1 ¼ 27:778 �s), far detuned
(� ¼ �11:3 GHz) standing wave (wave number kL ¼
7:4� 106 m�1 and one way intensity I0 ¼ 150 mW).
The amplitude of the kicks is modulated with two frequen-
cies !2 and !3. The corresponding Hamiltonian reads

H ¼ p2

2
þ K cosx½1þ " cosð!2tÞ cosð!3tÞ�

XN�1

n¼0

�ðt� nÞ;

(4)

where time is measured in units of T1, space in units of
ð2kLÞ�1, momentum in units of 2@kL=k

- , with k- ¼
4@k2LT1=M ¼ 2:89 (M is the atom mass) playing the role
of an effective Planck constant (½x; p� ¼ ik- ), and K is the
average kick amplitude. The kicks are short enough (du-
ration � ¼ 0:8 �s) as compared to the atom dynamics so
that they can be considered as Dirac delta functions.
Decoherence processes, analyzed in detail in [5], are small
for the typical duration of the experiment t ’ 160 kicks.

If !2, !3, � and k- are incommensurate, this 1D quasi-
periodic kicked rotor has been shown to be equivalent to a
3D disordered anisotropic system [6,14,15] and to display

an Anderson metal-insulator transition, as evidenced by the
fact that it belongs to the universality class of the orthogo-
nal (characteristic of spinless time-reversal invariant sys-
tems) 3D Anderson model [6,7], i.e., has the same critical
exponent �. A peculiarity of the quasiperiodic kicked rotor
is that the various quasieigenstates of the system all have
the same localization properties, making the experimental
measurement of the AIGF easier.
Another peculiarity is that the localization manifests

itself in momentum space instead of configuration space.
We thus expect the AIGF to take simpler forms in momen-
tum space, with expressions similar to Eqs. (1)–(3) (simply
replacing position r by momentum p). In order to avoid
confusion, we will use the notation �ðp; p0; tÞ for the
AIGF in momentum space. Thus, an initial momentum
distributionWðp; t ¼ 0Þ will on average evolve at time t to

Wðp; tÞ ¼
Z

�ðp; p0; tÞWðp0; 0Þdp0: (5)

Experimentally, we are able to measure the momentum
distribution at the end of a pulse sequence (up to 160
kicks), using Raman stimulated transitions (see [16,17]
for details). The initial state Wðp; t ¼ 0Þ is a thermal
momentum distribution whose width is much smaller
than the width of the final distribution, and can thus be
approximated by a �-function �ðpÞ in Eq. (5). As a
consequence, the final momentum distribution Wðp; tÞ
faithfully measures the intensity Green function�ðp; tÞ �
�ðp; 0; tÞ.
Figure 1 shows the experimentally measured AIGF

�ðp; tÞ at various times in the localized, critical, and
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FIG. 1 (color). First row: Measured AIGF of the quasiperiodic atomic kicked rotor at different times t in the (left to right) localized
ðK;"Þ¼ ð4:5;0:1Þ, critical ðK¼Kc;"Þ¼ ð6:3;0:38Þ and diffusive ðK;"Þ¼ ð9:0;0:8Þ regimes. Second row: Appropriate rescalings of the
momentum by t0 (localized), t1=3 (critical), or t1=2 (diffusive), bring the curves at different times into coincidence (the vertical scales
are also rescaled in order to preserve normalization). The shapes are different in the three regimes: exponential localization, Eq. (1), in
the localized regime, Gaussian shape, Eq. (2), in the diffusive regime, and the new ‘‘Airy shape,’’ Eq. (6), at the critical point.
Parameters are k- ¼ 2:89, !2 ¼ 2�

ffiffiffi
7

p
, !3 ¼ 2�

ffiffiffiffiffiffi
17

p
. Time is measured in units of number of kicks and momentum in units of 2@kL.
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diffusive regimes. The three regimes obey different scaling
laws. In the localized regime (left column), the momentum
distribution is localized—i.e., it is time independent—at
long times and thus scales as t0. In the diffusive regime, the
average kinetic energy hp2ðtÞi increases linearly with time,

so that the typical momentum scales as t1=2; this is manifest
in the broadening of the distribution with time seen in the
right column. At the critical point of the Anderson tran-
sition, we observe [2,5], as predicted by the one parameter

scaling theory [18,19], an anomalous diffusion hp2iðtÞ �
t2=3. This implies that the typical momentum scales as t1=3

leading to a slower broadening of the distribution (middle
column). If the raw experimental data are rescaled accord-
ing to these laws (bottom row in Fig. 1), i.e., plotted vs pt0,

pt�1=3, and pt�1=2 in the localized, critical, and diffusive
regimes, respectively, curves taken at various times coin-
cide, which constitutes an experimental proof of the valid-
ity of the scaling laws (see [20] for a numerical study). The
shapes of the distributions are different in the various
regimes: exponential shape in the localized regime,
Gaussian shape in the diffusive regime. The intermediate
shape at the critical point is discussed below.

Figure 1 is a clear manifestation of the scaling proper-
ties. The anomalous diffusion is not a transient behavior
and the AIGF keeps the same shape at the critical point.
However, slightly off the critical point, the AIGF tends
gradually to either a localized or diffusive behavior, fol-
lowing the anomalous diffusion only for short times. To
confirm this observation over a time scale larger than 160
kicks, we performed numerical simulations of the critical
dynamics up to t ¼ 106 kicks. The result is shown in Fig. 2.

The advantage of numerical simulations is that it is pos-
sible to explore the tails of the momentum distributions
(hidden by noise in a real experiment). The anomalous

diffusion—with the characteristic subdiffusive t1=3 scal-
ing—is clearly visible. Obviously, the distribution is nei-
ther exponential (which would result in straight lines in the
logarithmic plot), nor Gaussian (which would appear as a
parabola in the logarithmic plot).
The form of the critical AIGF can be deduced from the

self-consistent theory of localization [8]. This mean-field
theory describes quantum transport in disordered systems
at large distances and for long times (see, for example,
[21]). It has been shown to be relevant for the 1D periodi-
cally kicked rotor [22] and correctly predicts a metal-
insulator transition in three dimensions and the anomalous

diffusion at the threshold: Dð!Þ � ð�i!Þ1=3 with ! the
frequency conjugated to time [23] (the 1=3 exponent is the
counterpart in the frequency domain of the anomalous

diffusion hp2iðtÞ � t2=3 in the time domain).
Using this critical behavior, we can compute the AIGF

for the quasiperiodic kicked rotor [24]. The details of the
calculation will be published elsewhere; we obtain:

�ðp; tÞ ¼ 3
2ð3�3=2tÞ�1=3Ai½ð3�3=2tÞ�1=3jpj�; (6)

where � is a parameter directly related to the critical

quantity �c ¼ limt!1hp2i=t2=3 (see [2,5]) via � ¼
�ð2=3Þ�c=3, where � is the Gamma function and AiðxÞ
is the Airy function. The asymptotic form Eq. (3) comes
simply from the limiting behavior of the Airy function for
large x and is found perfectly intermediate between the
exponential (localized) and the Gaussian (diffusive)
shapes.
The analytic prediction, Eq. (6), matches very well the

shape obtained from numerical simulations of the quasi-
periodically kicked rotor shown in Fig. 2. The only notice-
able difference is near p ¼ 0, where the result of the
numerical simulation is slightly larger than the analytic
prediction. Note that this phenomenon, currently under
study, is invisible on the time scale of the experiment
(160 kicks).
Figure 3 shows the comparison between the experimen-

tally measured critical AIGF and the analytic prediction,
Eq. (6). The only fitting parameter is the global scale �; we
find � ¼ 1:60 for the best fit, which is in fair agreement
with the theoretical prediction � ¼ �ð2=3Þ�c=3 ¼ 2:04.
The difference can be attributed to several factors, the
most important ones (roughly 10% each) being finite-
time effects and residual decoherence which both tend to
shift the effective critical point to lower �, i.e., lower �.
Although it is visually not obvious to distinguish the

observed shape from either an exponential shape or a
Gaussian shape, a careful fitting procedure gives a clear
cut result. The residual between the observed distribution
and the analytic prediction (6), shown in panel (b), is
consistently zero (within the error bars), while a fit with

FIG. 2 (color). Numerically simulated time evolution of an
initially localized momentum distribution (log scale), for the
quasiperiodic kicked rotor at the critical point of the Anderson
transition. The spreading follows an anomalous diffusion, with
hp2ðtÞi / t2=3, and the shape is identical at all times, being
neither exponential (as it is in the localized regime), nor
Gaussian (as it is in the diffusive regime). The analytic predic-
tion, Eq. (6), is shown as the red thick curve at 1� 106 kicks.
The agreement is excellent, without any adjustable parameter.
Parameters are those of Fig. 1. Time is measured in millions of
kicks and momentum in units of two recoil momenta 2@kL.
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an exponential shape, panel (c), or a Gaussian shape,
panel (d), displays significant deviations. This is fully
confirmed by a quantitative check of the quality of the
fit. The fit by the Airy function gives a �2 per degree of
freedom equal to 1.09—i.e., perfectly acceptable—while
the exponential fit gives 4.5 per degree of freedom and the
Gaussian fit 8.8, two unacceptably large values. This
clearly shows that the self-consistent theory of localization
accounts for the critical AIGF and its scaling properties.

In conclusion, we have studied experimentally the trans-
port at the threshold of the Anderson transition. It obeys
(temporal) scale invariance, a fundamental property of
second-order phase transitions, and this defines a new state,
between an insulator and a metal. Its analytic form can be
deduced from the self-consistent theory of localization.
Work is in progress to allow experimental observations at
longer times, which should allow us to characterize the
small deviations observed numerically, whose origin could
be multifractality.
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FIG. 3 (color online). (a) Experimental data for the rescaled
critical AIGF (see Fig. 1) averaged over time (black circles with
error bars) and a fit given by Eq. (6), with � as the only fitting
parameter. The agreement is clearly excellent. The residual does
not significantly differ from zero [panel (b)]. Fits by an expo-
nentially localized (c) or a Gaussian (d) distribution show
significant deviations.
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