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We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional

Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a

maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation

rate may significantly exceed its zero-temperature value. We also find the dependence of the differential

inelastic scattering rate on the transferred energy. This rate yields information about temperature

dependence of local pair correlations.
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Recent experiments with ultracold atomic gases [1,2]
have renewed interest in the fundamental properties of the
elementary excitations in interacting Bose systems.

A three-dimensional (3D) Bose gas undergoes the
Bose-Einstein condensation (BEC) phase transition at a
sufficiently low temperature [3]. The transition affects
dramatically the spectrum of elementary excitations (qua-
siparticles) of the system. In the Bose-condensed phase, the
quasiparticles obey the Bogoliubov dispersion relation

�q ¼ sq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðq=2msÞ2p

, which interpolates between a

phononlike linear spectrum at small momenta (here s is
sound velocity and m is each boson’s mass) and a free-
particle-like spectrum at large momenta [3].

The BEC transition affects strongly the lifetime of low-
energy quasiparticles. The relaxation rate �q of quasipar-

ticles in the phonon part of the spectrum is very sensitive to
both their momenta q [4] and temperature T [5–7]: �q /
maxfð"qÞ5; "qT4g. However, the relaxation rate of high-

energy quasiparticles is dominated by collisions with large
momentum transfer, does not depend on either q or T, and
thus is not sensitive to BEC transition [4]. Some of these
long-standing predictions have been recently verified ex-
perimentally; see [1,2] for a review.

Unlike its 3D counterpart, the one-dimensional (1D)
interacting Bose gas turns at low temperatures to a quasi-
condensate in which the long-range order is destroyed
by quantum fluctuations [3,6], and the BEC transition turns
to a crossover. Yet, despite this difference, the spectrum of
elementary excitations in 1D is still described very well by
the Bogoliubov dispersion relation [8].

However, the quasiparticle lifetime in 1D is very differ-
ent from that in higher dimensions and is not as well
understood. The reason is that, due to the constraints
imposed by the energy and momentum conservation,
two-particle collisions do not lead to a relaxation in 1D.
At the same time, realizations of 1D Bose systems with
cold atoms confined in tight atomic waveguides [1] are
described rather well [9] by a model of bosons with zero-
range repulsive interaction (the Lieb-Liniger model),

which is integrable [8,10]. In this model, the redistribution
of the momenta between particles in a collision and, there-
fore, relaxation are absent [10]. Such apparent lack of
relaxation was recently demonstrated experimentally [11]
(see the discussion below).
The leading corrections to the Lieb-Liniger model have

the form of a local three-particle interaction term [12,13],
which breaks the integrability and brings about the quasi-
particle relaxation. In this Letter, we study relaxation of a
particle with a large momentum. This problem was con-
sidered recently in Ref. [13], where the inelastic relaxation
rate due to three-particle collisions was evaluated in
the approximation that neglects two-body repulsion. The
results of Ref. [13] suggest that, very much like in 3D, the
relaxation rate of high-energy quasiparticles is indepen-
dent of momentum and temperature. However, in the
present Letter, we demonstrate that, in a dramatic depar-
ture from the behavior in higher dimensions, the relaxation
rate in 1D depends strongly on temperature even at large
momenta. It has a pronounced peak at the crossover to the
quasicondensate state.
We evaluate the differential and the total relaxation

rates. Both can be inferred from observations of colliding
clouds of cold atoms [11,14].
To describe the relaxation in a weakly interacting 1D

Bose gas, we consider the simplest Hamiltonian

H ¼ H0 þ V; (1)

where

H0 ¼
Z
dxc yðxÞ

�
� 1

2m

d2

dx2

�
c ðxÞþ c

2

Z
dx :�2ðxÞ : (2)

describes 1D bosons with a repulsive contact interaction
(hereinafter we set kB ¼ @ ¼ 1), and

V ¼ � �

9m

Z
dx : �3ðxÞ : (3)

represents the leading integrability-breaking perturbation
[12,13]. In Eqs. (2) and (3), �ðxÞ ¼ c yðxÞc ðxÞ is the local
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density operator and the colons denote the normal order-
ing. The strength of the interaction [represented by the
second term in Eq. (2)] is characterized [8] by the dimen-
sionless parameter � ¼ mc=n, where n is the 1D concen-
tration. A finite three-particle scattering amplitude appears
already in the first order in � � 1.

In this Letter, we study relaxation of a boson with
momentum q (we assume that q > 0) and kinetic energy
�q ¼ q2=2m, which is large compared to both temperature

T and a typical interaction energy per particle !s:

�q � maxfT;!sg; !s ¼ ms2=2: (4)

In the limit of a weak interaction � � 1, which we con-
sider from now on, the sound velocity s in Eq. (4) is given
by [8] s ¼ ðn=mÞ ffiffiffiffi

�
p

. The condition (4) ensures that the

particle is added to an almost empty single-particle state:

fq ¼ hc y
qc qi � 1 [15,16].

In the lowest (second) order in �, the differential rate of
inelastic scattering is given by

�qð!Þ ¼ �2

2�m2

Z q=3

�1
dp�ð!� �q þ �q�pÞGðp;!Þ; (5)

where Gðp;!Þ ¼ R
dxdtei!t�ipxGðx; tÞ is the Fourier

transform of the correlation function

G ðx; tÞ ¼ h: �2ðx; tÞ :: �2ð0; 0Þ :i; (6)

which should be evaluated for the Lieb-Liniger model
Eq. (2). In writing Eq. (5) we took into account the kine-
matic constraint p < q=3 on the momentum transfer in the
course of three-particle scattering. The constraint trans-
lates into a restriction on the transferred energy: �qð!Þ
vanishes for !> 5�q=9. In terms of �qð!Þ, the total

relaxation rate is given by

�q ¼
Z

d!�qð!Þ: (7)

The differential rate (5) at large energy transfer ! is
determined by the behavior of Gðx; tÞ at t ! 0:

G ðx; tÞ ¼ 2n2g2�
2; �ðx; tÞ ¼

�
m

2�it

�
1=2

eimx2=2t: (8)

Here n2g2 ¼ h: �2ð0; 0Þ :i is the probability of finding two
bosons at point x ¼ 0 at time t ¼ 0, and �ðx; tÞ is the
solution of the single-particle Schrödinger equation with
the initial condition �ðx; 0Þ ¼ �ðxÞ. Interactions do not
affect the time evolution in Eq. (8) as long as jtj �
minf1=!s; 1=Tg. Instead, the dependence on temperature
and on the interaction strength enters Eq. (8) via the
normalized local pair correlation g2. For the Lieb-Liniger
model this quantity can be evaluated exactly [17]. For a
weak interaction g2 increases monotonically with T from
g2 ¼ 1 at T � Ts to g2 ¼ 2 at T � Ts [17], where we
introduced a characteristic temperature scale

Ts ¼
ffiffiffiffiffiffiffiffiffiffiffi
!sT0

p ¼ ns; (9)

here T0 ¼ 2n2=m is the quantum degeneracy temperature.
(Note that !s � Ts � T0 for a weak interaction.)
Substitution of Eq. (8) into Eq. (5) yields the differential

rate at large positive energy transfer [18]:

�qð!Þ ¼ �2T0g2

2�
ffiffiffiffiffiffiffiffiffi
�q!

p
2
4 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!=�q

q

ð1�!=�qÞ
�
1þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!=�q

q �
3
5

1=2

:

(10)

Equation (10) is applicable at maxf!s; Tg � !< 5�q=9.

Away from the upper end of this interval, at ! � �q,

Eq. (10) reduces to

�qð!Þ ¼ �2T0g2

2�
ffiffiffiffiffiffiffiffiffiffiffiffi
2�q!

p : (11)

To further analyze �qð!Þ at j!j � �q, we note that in

this range of ! the momenta p contributing to the integral
in Eq. (5) are small (jpj � q), and it simplifies to

�qð!Þ ¼ �2

2�mq
Gð0; !Þ: (12)

It follows from the properties of Gðp;!Þ that the differen-
tial rate (12) satisfies the detailed balance condition

�qð�!Þ ¼ e�!=T�qð!Þ: (13)

Equation (13) implies that, while �qð!Þ � �qð�!Þ at

small energy transfers j!j � T, the differential rate is
exponentially small at large negative !.
To gain further understanding of the differential rate at

small momentum transfer, we consider first the regime of
relatively high temperatures T � Ts, when the interaction
in Eq. (2) can be neglected (except for very tiny energy
transfers; see below). The correlation function in Eq. (12)
is then easily evaluated, resulting in

�qð!Þ ¼ �2

2�3mq

Z Y4

i¼1

dkifk1fk2ðfk3 þ 1Þðfk4 þ 1Þ

� �ðk1 þ k2 � k3 � k4Þ
� �ð�k1 þ �k2 � �k3 � �k4 þ!Þ; (14)

where fk is the Bose distribution. [Equation (14) can also
be derived by using Fermi’s golden rule.]
At Ts � T � T0 the chemical potential is given by

	 ¼ �	0; 	0 ¼ T2=T0 � T: (15)

At j!j � T the differential rate is dominated by processes
in which both the initial and the final states of the two low-
energy particles involved in a collision belong to the part of
the spectrum with high occupation numbers: fki � fki þ
1 � T=ð�ki þ	0Þ � 1. Evaluation of Eq. (14) with this

approximation results in

�qð!Þ ¼ �2ðT0=�qÞ1=2ðT0=TÞ3Fðj!j=	0Þ; j!j � T:

(16)
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The analytical expression for the function FðzÞ is some-
what cumbersome. It is a monotonic function normalized
as

R1
0 FðzÞdz ¼ 1=8, with a power-law behavior at z � 1,

FðzÞ ¼ ð2 ffiffiffi
2

p
=�Þz�5=2, and a logarithmic asymptote

FðzÞ ¼ ð5=16�2Þ lnð8e�7=5=zÞ at z ! 0.
The logarithmic divergence at ! ! 0 in Eq. (16) comes

from k1 � k2 � k3 � k4 in the integral over momenta in
Eq. (14) and is an artifact of the free-boson approximation.
The probability of scattering two bosons with close mo-
menta k1 � k2 in the initial state is suppressed at jk1 �
k2j � mc. (There is a similar suppression for the final
states k3;4.) The logarithmic divergence in �qð!Þ is thus

regularized at j!j & !2
s=T0 for T � Ts.

At Ts � T � T0 and! � 	0, the main contribution to
the integral in Eq. (14) comes from jk1;2j & ffiffiffiffiffiffiffiffiffiffi

m	0
p

and

jk3;4j �
ffiffiffiffiffiffiffiffi
m!

p � jk1;2j. Neglecting k1;2 and �k1;2 in the

arguments of the delta functions in Eq. (14), we find

�qð!Þ ¼ �2T0

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�qj!j

q g2

ð1� e�!=2TÞ2 ; j!j�	0; (17)

where g2 ¼ 2 as appropriate for T � Ts. Equation (17)
extrapolates between Eqs. (11) and (16).

With lowering the temperature, Eqs. (14)–(16) become
inadequate when 	0ðTÞ is of the order of the interaction
energy per particle !s, i.e., at T � Ts. At T � Ts, how-
ever, the Bogoliubov approximation for the local density
operator becomes applicable [19]. In this approximation,
excitations of a 1D Bose liquid are essentially free phonons
(Bogoliubov quasiparticles), described by the Hamiltonian

HB ¼ P
k"kb

y
k bk, with "k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kð�k þ 4!sÞ

p
. In terms of

phonons, the density operator has the form �ðxÞ ¼ nþP
k�0ðn�k=L"kÞ1=2ðbk þ by�kÞeikx, where L is the size of

the system. By using this representation, evaluation of
Eq. (12) is straightforward and yields

�qð!Þ ¼ �2T0

64�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!s�q

p
�

!=!s

1� e�!=2T

�
2½1þ ð!=4!sÞ2��1=2

� f1þ ½1þ ð!=4!sÞ2�1=2g�3=2: (18)

At j!j � !s, Eq. (18) reduces to Eq. (17) with g2 ¼ 1
appropriate for T � Ts. In fact, Eq. (17) is valid at any
T � T0, provided that the energy transfer falls within the
range maxf	0; !sg � j!j � �q. For positive ! in this

range, the validity of Eq. (17) is due to the fact that the
interaction has negligible effect [16] on the final states of
the colliding particles (�k3 � �k4 � !=2 � !s). The ap-

plicability of Eq. (17) for negative ! in the above range
then follows from Eq. (13).

We show the typical plots of the differential relaxation
rate �qð!Þ at T � Ts and T � Ts in Fig. 1.

We turn now to the evaluation of the total relaxation rate,
Eq. (7). There are two contributions to the integral over !
in (7):

�q ¼ �1 þ ~�q: (19)

The first contribution, �1, comes from the high-energy
‘‘tail’’ of �qð!Þ; see Eqs. (10) and (11). This contribution

is independent of q and is given by [18]

�1 ¼ �2T0g2

3
ffiffiffi
3

p : (20)

Note that, unlike in higher dimensions, �1 depends on
temperature via g2ðTÞ; see the discussion above.

The second contribution in Eq. (19), ~�q / ��1=2
q , comes

from the processes with a small energy transfer j!j &
maxfT;!sg. Using Eq. (16), we find

~� q ¼ �2T0

4

�
Ts

�q

�
1=2

�
T0

Ts

�
3=2Ts

T
; Ts � T � T0: (21)

At lower temperatures we obtain, with the help of Eq. (18),

~� q¼�2T0

16

�
Ts

�q

�
1=2

�
T0

Ts

�
3=2

�
T

Ts

�
2
;

T2
s

T0

�T�Ts: (22)

Comparison with Eq. (20) shows that for not too large
energies [�q � TsðT0=TsÞ3] the small momentum transfer

contribution ~�q dominates the relaxation rate (19) in a

broad temperature interval:

Ts

�
�q

Ts

�
1=4

�
Ts

T0

�
3=4 � T � Ts

�
Ts

�q

�
1=2

�
T0

Ts

�
3=2

; (23)

which includes T ¼ Ts. At some temperature Tmax � Ts

within this interval, the relaxation rate reaches its peak
value �max ¼ �qðTmaxÞ; see Fig. 2. By extrapolating the

asymptotes (21) and (22) to the region T � Ts and finding
their intersection, we estimate Tmax � 1:6Ts, and

�max � 0:16�2T0ðTs=�qÞ1=2ðT0=TsÞ3=2: (24)

The actual values of Tmax and �max may differ from the
above estimates only by numerical factors; finding these
values would require a systematic description of the cross-
over regime T � Ts.
We now discuss briefly the feasibility of observing

relaxation by inelastic collisions in a system of cold atoms
confined in a cylindrical trap. In this case the effective
Hamiltonian (1)–(3) can be derived explicitly, by projec-
tion onto the lowest subband of transverse quantization.

FIG. 1. The differential inelastic scattering rate �qð!Þ at dif-
ferent temperatures (only the j!j � �q domain is shown). The

two plots correspond to Eqs. (14) and (18), evaluated at T ¼ 4Ts

and T ¼ Ts=4, respectively, with Ts ¼ T0=16.
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For a model in which the interaction in 3D is described by a
pseudopotential V3DðrÞ ¼ 4�ða=mÞ�ðrÞ, where a is the
s-wave scattering length [3], and with the amplitude of

radial zero-point motion ar ¼ ðm!rÞ�1=2 � a (here !r is
the trap frequency), one finds [9,13,20]

� ¼ 2a=na2r ; � ¼ 18 lnð4=3Þða=arÞ2: (25)

The main limitation arises due to 3-body recombination
processes [21], absent in our model. The corresponding
rate is �R ¼ 
n2g3=a

4
r [21], where g3 ¼ h: �3 :i=n3.

Using Eqs. (20) and (25), we find [18]

�1=�R ¼ �g2=g3; � ¼ 10:3a4=ðm
Þ: (26)

For 87Rb (a ¼ 5:3 nm, 
 ¼ 3� 10�31 cm6=s [22]), we
have � � 20. For a weak to moderately strong interaction
(� & 1), the ratio g2=g3 in Eq. (26) is of the order of 1 at all
T, and �1=�R � 10.

In experiments with periodically colliding clouds of cold
gases [11], the 3-body recombination occurs all the time,
while the scattering between the clouds takes place only
during the collision itself (about one-tenth of a period in
Ref. [11]). Therefore, the probability that during a period a
particle participates in an inelastic collision event with a
large energy transfer and the probability that it participates
in a 3-body recombination process are of the same order.
Accordingly, inelastic scattering with a large energy trans-
fer is difficult to detect unambiguously.

Relaxation by the inelastic scattering with a small
energy transfer is effective when the interaction is
weak: � � 1; indeed, the interval T2

s =T0 � T � T0 [see
Eqs. (21) and (22)] disappears for large �. For the peak
value of �q [see Eq. (24)], we find

�max=�R � 2:3�ðTs=�qÞ1=2��3=4; (27)

which for a fixed ratio �q=Ts diverges in the limit � ! 0.

The maximum of �q is reached at T � Ts. The condition

of the observability of the inelastic relaxation (�max � �R)
and the condition for the high-energy quasiparticle to be
outside the quasicondensate yet well within the lowest
subband of transverse quantization (Ts � �q � !r) can

be satisfied simultaneously. For example, for 87Rb the
trap frequency !r=2� ¼ 15 kHz and concentration

n ¼ 7 	m�1 correspond to � ¼ 0:2 and Ts ¼ 120 nK.
For �q=Ts ¼ !r=�q ¼ 2:4, Eq. (27) then yields

�max=�R � 100. The parameters above are realistic with
today’s experimental technology [11,23].
In conclusion, we evaluated the quasiparticle relaxation

rate in a weakly interacting 1D Bose liquid. Unlike in 3D,
the rate is strongly momentum- and temperature-
dependent, with a maximum at T � ns, where s is the
sound velocity at T ¼ 0. Our predictions can be verified in
experiments with colliding clouds of cold atoms.
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