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Casimir Repulsion between Metallic Objects in Vacuum
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We give an example of a geometry in which two metallic objects in vacuum experience a repulsive
Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a
hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with
numerical calculations for both perfect and realistic metals. The system does not support stable levitation,
as the particle is unstable to displacements away from the symmetry axis.
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Introduction.—The Casimir force between two parallel
metal plates in vacuum is always attractive. A longstanding
question is whether this is generally true for metallic or
dielectric objects in vacuum, or whether the sign of the
force can be changed by geometry alone. More precisely,
can the force between noninterleaved metallic or dielectric
bodies in vacuum—that is, bodies that lie on opposite sides
of an imaginary separating plane—ever be repulsive? In
this Letter, we answer this question in the affirmative by
showing that a small elongated metal particle centered
above a thin metal plate with a hole, depicted in Fig. 1(a),
is repelled from the plate in vacuum when the particle is
close to the plate. The particle is unstable to displacements
away from the symmetry axis, so that the system does not
support stable levitation, consistent with the theorem of
Ref. [1]. We establish our result using a symmetry argu-
ment for an idealized case and by brute-force numerical
calculations for more realistic geometries and materials.
We also show that this geometry is closely related to an
unusual electrostatic system in which a neutral metallic
object repels an electric dipole (in fact, one can even obtain
electrostatic repulsion for the case of a point charge [2]).
Anisotropic particles are essential here; a spherical particle
above a perforated plate is always attracted, although
nonmonotonic effects in an isotropic case have been sug-
gested for the null-energy condition rather than the Casimir
energy [3].

Casimir repulsion is known to be impossible for
ld/multilayer [4] or mirror-symmetric [5] metallic or
dielectric geometries in vacuum. Interleaved “‘zipper” ge-
ometries can combine attractive interactions to yield a
separating “‘repulsive’” force [6], but the sign of the force
is ambiguous in such geometries. (In contrast, in this paper
the objects lie on opposite sides of a separating z = 0%
plane and the interaction is unambiguously repulsive.)
Repulsive forces also arise for fluid-separated geometries
[7] or magnetic [8,9] or magnetoelectric materials [10,11].
A repulsive Casimir pressure was predicted within a hol-
low metallic sphere [12,13], but this is controversial as it
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does not correspond to a rigid-body motion, is intrinsically
cutoff dependent [14], and the repulsion disappears if the
sphere is cut in half [S]. Another proposal is to use ‘“‘meta-
materials” formed of metals and dielectrics arranged into
complex microstructures [10,15-17]. However, no specific
metamaterial geometries that exhibit Casimir repulsion
have been proposed, and the theoretical result [1] indicates
that repulsion in the metamaterial limit (separations >
microstructure) is impossible for parallel plate geometries.

Symmetry argument.—We begin by establishing repul-
sion in an idealized geometry: an infinitesimal particle
centered above an infinitesimally thin perfect-metal
plate with a hole. We assume the particle is electrically
polarizable only in the z direction and is not magnetically
polarizable at all (the limit of an infinitesimal metallic
“needle”) and the plate lies in the z = 0 plane [Fig. 1(a)].
The Casimir(-Polder) energy for such a particle at position
X is given by [18]
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FIG. 1 (color online). (a) Schematic geometry achieving
Casimir repulsion: an elongated metal particle above a thin
metal plate with a hole. The idealized version is the limit
of an infinitesimal particle polarizable only in the z direction.
(b) At z = 0, vacuum-dipole field lines are perpendicular to the
plate by symmetry, and so dipole fluctuations are unaffected by
the plate (for any w, shown here for w = 0). (c) Schematic
particle-plate interaction energy U(z) — U(0): zero at z = 0 and
at z — oo, and attractive for z > W, so there must be Casimir
repulsion (negative slope) close to the plate.
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Here «,, is the electric polarizability of the particle in the z
direction and (E.E,); is the mean-square z component of
the electric-field fluctuations at position x and imaginary
frequency w = i¢. This expectation value is evaluated in a
geometry without the particle (i.e., a geometry consisting of
only the perforated plate in vacuum). Conventionally, it is
renormalized by subtracting the (formally infinite) mean-
square fluctuations in vacuum. One way to compute the
expectation value is to note that it is related to a classical
electromagnetic Green’s function via the fluctuation-
dissipation theorem. More specifically, (E.(x)E.(x')),, is
proportional to the electric field E.(x")e " produced by
an oscillating z-directed electric dipole p = p,ze ™’ at
position X.

The key idea for establishing repulsion is simple: we
find a point x such that the classical field of an oscillating
z-directed electric dipole at x is unaffected by the presence
of the metallic plate with a hole. It then follows that
U(x) = U(o0), implying that the energy U must vary non-
monotonically between x and o and hence must be repul-
sive at some intermediate points. While in most geometries
no such x exists, in the perforated plate geometry this
condition is achieved by symmetry at x =0. If a
z-directed electric dipole is placed at z = 0 in the hole,
then the electric-field lines of the dipole in vacuum are
already perpendicular to the plate by symmetry, as illus-
trated in Fig. 1(b); thus, the vacuum dipole field solves
Maxwell’s equations with the correct boundary conditions
in the presence of the plate, and U(z = 0) = U(c0). Note
that this is true by symmetry at every frequency w (real or
imaginary), because the dipole moment p at z =0 is
antisymmetric with respect to the z = 0 mirror plane.
Intuitively, the basic point is that the electric dipole
fluctuations of the particle do not couple to the plate at
all when z = 0.

For large z—that is, z much larger than the hole diameter
W—the presence of the hole in the plate is negligible, and
we must have the usual attractive Casimir-Polder interac-
tion. So, as schematically depicted in Fig. 1(c), we expect
the interaction energy U(z) — U(0) to be zero at z = 0,
decrease to negative values for small z > 0 (leading to a
repulsive force) then increase to zero for large z (leading to
an attractive force). If the hole is circular, then by symme-
try the force is purely in the z direction and the point of
minimum U is an equilibrium position, stable under z
perturbations; however, both the theorem of Ref. [1] and
explicit calculations show that this equilibrium point is
unstable under lateral (xy) perturbations of the particle
position. In fact, numerical calculations (not shown) indi-
cate that the particle is unstable to lateral perturbations and
tilting at all separations z.

Electrostatics.—Strictly — speaking, this symmetry
argument only shows that the force must be repulsive at

some 7 # 0: U could conceivably have multiple oscilla-
tions. To definitively rule out this possibility, we rely on the
explicit numerical calculations described below. However,
on an intuitive level, the basic behavior of the force can be
understood from electrostatic considerations.

To see this, let us focus on the w = i¢ = 0 contribution
to the Casimir energy (1); we expect the contribution from
nonzero imaginary frequencies to be qualitatively similar
(though this expectation can sometimes be violated, as in
the inset of Fig. 4). The w = 0 contribution is proportional
to the electrostatic energy of a z-directed electric dipole in
the presence of a neutral metal plate. By the same argu-
ments as above, such an electrostatic dipole must be re-
pelled from the plate for some z > 0. To see this explicitly,
suppose there is a static dipole at some position (0,0, z),
and consider the induced charges on the plate. In the limit
where the plate is infinitesimally thin, we can combine the
charges on the two sides of the plate into a single surface
charge density o. On a qualitative level, we expect this
total charge density to be of the form shown in Fig. 2(a),
with o positive for small r and negative for large r. In
particular, o can be constructed out of a superposition of
dipoles in the z = 0 plane, oriented radially inward about
the z axis. A simple calculation shows that vertical force on
a dipole at (0,0, z) from a horizontal dipole at distance r
from the z axis is repulsive if » > 2z and attractive if r <
2z. Thus, if the hole is circular with diameter W and z <
W /4, all the dipoles will exert a repulsive force and the
total force is necessarily repulsive. On the other hand,
when z > W, most of the dipoles will exert an attractive
force, so the total force is attractive. In contrast, a dipole
oriented parallel to the plate is always attracted, as one can
see from the induced charge density schematically shown
in Fig. 2(b). This explains why an elongated shape is
necessary for the repulsive effect (see Fig. 4): dipole
fluctuations parallel to the plate give rise to an attractive
Casimir force.

We can confirm this picture by solving this electrostatics
problem exactly in the two-dimensional (2d) case, where
the metal plate with a hole is replaced by a metal line with a
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FIG. 2. (a) Schematic electrostatic interaction of a dipole with
a neutral perforated plate (side view), depicting the charge
density o induced on the plate. Since o is positive for small r
and negative for large r, o can be constructed out of a superpo-
sition of dipoles in the z = O plane, oriented radially inward
about the z axis. A simple calculation then shows that the
interaction is repulsive for small z. (b) In contrast, a dipole
oriented parallel to the plate is always attracted, as one can see
from the induced charge density shown above.
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gap of width W. Assuming a 2d Coulomb force F(r;,) =
4192/ 112, and a z-directed dipole moment p_, we find

, 27
Uelectrostatic(z) = — Pz (W2 + 4Z2)2‘ @

The force is indeed repulsive for small z, with a sign
change occurring at z = W/2. A similar calculation for a
y-directed dipole yields a uniformly attractive force.

The repulsion in the z-directed case is quite unusual,
even in electrostatics: in almost all cases, the electrostatic
interaction between an electric dipole and a neutral metal
object is attractive, not repulsive. Indeed, on an intuitive
level, it seems almost inevitable that a dipole will induce a
dipole moment in the metal object oriented so that the force
is attractive. More rigorously, one can prove that this
interaction is attractive in several different limits. For
example, if a dipole is very far away (z — o) or very close
to the surface of a metal object, the interaction is always
attractive. One can also prove that the force is attractive if
the metal object is replaced by a dielectric material with a
permittivity €/€, = 1 + & where 0 < § < 1, using a per-
turbative expansion in 0. Clearly, a special geometry is
necessary to obtain a repulsive force in electrostatics, and
arguably in Casimir interactions as well by extension to
o # 0 along the imaginary frequency axis (see concluding
remarks below).

Numerical demonstration.—Moving beyond the ideal-
ized geometry, we expect the repulsion to be robust under
small perturbations, such as finite particle size, plate thick-
ness, and permittivity. This expectation is validated by the
explicit calculations described below. We utilize two recent
numerical methods, evaluating the Casimir force at zero
temperature. First, we use a finite-difference time-domain
(FDTD) technique that computes the Casimir stress tensor
via the Green’s function [19,20], with a free-software
implementation [21]. Second, we use a boundary-element
method (BEM) that can solve either for the stress tensor or
directly for the Casimir energy or force via a path-integral
expression [22].

Figure 3 shows the Casimir force for a finite-size
cylindrical metal particle (20 X 320 nm) above a finite-
thickness (# = 20 nm) plate with a circular hole of
diameter 1 um, considering both perfect metals and
finite-permittivity gold, along with the force on a perfect-
metal sphere (diameter 60 nm) for comparison. The perfect-
metal results were computed with BEM; the others were
computed by our FDTD technique in cylindrical coordi-
nates, with the gold permittivity described by e(w = i§) =
1 + w3 /&%, where w, = 1.37 X 10'° rad/ sec (the omis-
sion of the loss term, which is convenient for FDTD [19],
does not significantly affect our results). The force on the
sphere is always attractive, while the force on the cylindri-
cal particle is repulsive for a center-center separation d <
300 nm. Because of the finite sizes, when d < 170 nm the
tip of the particle intrudes into the hole. However, there is a
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FIG. 3 (color online). Exact Casimir force for cylinder-plate
geometry (inset) for perfect metals (computed with BEM) and
gold (computed with FDTD); positive (shaded) force is repul-
sive. For d = 300 nm and d > 170 nm (vertical dashed line), the
force is unambiguously repulsive as the cylinder is entirely
above the plate. In contrast, a perfect-metal sphere (diameter
60 nm) is always attracted to the plate.

range of about 130 nm for d > 170 nm where the force is
unambiguously repulsive: the two objects lie on opposite
sides of an imaginary separating plane. Similar behavior is
seen for an infinitesimally thick (¢ = 0) plate (Fig. 3).
Somewhat surprisingly, the finite-permittivity gold exhibits
a stronger repulsive force than the perfect-metal case of the
same geometry; this is explained below as a consequence of
the finite thickness of the plate.

In order to better understand the dependence on geome-
try, we use BEM to explore the parameter space of a
simplified 2d (yz) version of the problem: a metal elliptical
particle above a metal line with a gap of width W. We
compute the Casimir force in this setup for perfect metals
and 2d electromagnetism, with the standard convention
that the electric field is in the plane, as in a “TE” mode.
(This system is equivalent to a scalar field with Neumann
boundary conditions on the two objects). In Fig. 4, we
explore how both the ellipticity y = a./a, of the particle
and the line thickness r affect the force, for a fixed width W
and particle length @, = 0.002W. As y — 1, the elliptical
particle becomes increasing circular, and repulsion dimin-
ishes due to the attractive force associated with dipole
fluctuations in the y direction. We find that the repulsive
force disappears for y < 1.25, when ¢ = 0. Similarly, as ¢
becomes larger, one can no longer make the approximation
that the metal line does not affect the field of a z-directed
dipole at d = 0, and the repulsive effect disappears by
t = 0.1W for vy = 4.

Further insight can be gained from the contribution of
each imaginary frequency w = i¢ to the force for a fixed
particle-line separation d = 0.2W (roughly maximum re-
pulsion). The upper-left inset to Fig. 4 shows that as y
decreases, the attractive contributions first appear at small
¢, eventually making the overall force attractive. The right
half of the inset shows that, in contrast, a nonzero ¢ gives
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FIG. 4 (color online). Exact (BEM) 2d Casimir force for
ellipse-line geometry (lower inset) with perfect metals and TE
polarization (in-plane electric field); positive force (shaded) is
repulsive. The effects of both particle width @, and line thickness
t are shown, for fixed a, = 0.002W. As the ellipticity y = a,/a,
decreases or t increases, the repulsive force diminishes. Upper-
left inset: frequency-resolved force F(Imw) at fixed separation
d=02W and r = 0": as y decreases, attractive contributions
arise from small Imw. Upper-right inset: F(Imw) at fixed d =
0.2W and y = 4: as t increases, attractive contributions arise
from large Imw.

rise to attractive force contributions at large £. This may
explain the larger repulsive force of real gold compared to
perfect metal in Fig. 3: the finite skin depth of gold cuts off
the large-¢ contributions, reducing the attractive effects of
the finite plate thickness (which, in this case, dominate the
attractive effects of the finite particle size and ellipticity).

Concluding remarks.—In this Letter, we have shown
that the sign of the Casimir force in vacuum can be
changed by geometry alone, without ‘“‘cheating” by inter-
leaving the bodies as in Ref. [6]. Consistent with Ref. [1],
the geometry described here does not support stable levi-
tation since the particle is unstable with respect to lateral
(xy) translation and tilting (as shown by additional 3d
BEM calculations). As for the question of experimental
realizations, we leave this to future work, though we note
that one approach would be to anchor the particle to a
substrate plate made of a low permittivity material using a
pillar made of the same kind of material. Assuming a
periodic array of such pillars and a complementary array
of holes with a unit cell of area 10 (wm)?, and estimating
the force per unit cell as the maximum repulsive force
calculated in Fig. 3, one obtains a repulsive pressure of
about 107® Pa. This is 2 or 3 orders of magnitude smaller
than typical experimental sensitivities [23], but the repul-
sion could be increased further by shrinking or optimizing
the geometry.

This geometry was motivated by the electrostatic ana-
logue shown in Fig. 2, where a qualitatively similar effect

is observed. Previously, another interesting nonmonotonic
Casimir effect was also seen to have an electrostatic
analogue [24]. Mathematically, the mostly nonoscillatory
exponential decay of the Casimir-force contributions for
imaginary frequencies w = i¢ tends to make the total
force qualitatively similar to the £ — 0" contribution (in
fact, this similarity becomes an exact proportionality in the
unretarded, van der Waals limit). This suggests that one
approach for discovering ““interesting”” geometric Casimir
effects is to first find an interesting electrostatic interaction,
and then seek an analogous Casimir system.
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