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In this Letter we report on the spontaneous formation of surprisingly regular periodic magnetic patterns

in an antiferromagnetic Bose-Einstein condensate (BEC). The structures evolve within a quasi-one-

dimensional BEC of 87Rb atoms on length scales of a millimeter with typical periodicities of

20 . . . 30 �m, given by the spin healing length. We observe two sets of characteristic patterns which

can be controlled by an external magnetic field. We identify these patterns as linearly unstable modes

within a mean-field approach and calculate their mode structure as well as time and energy scales, which

we find to be in good agreement with observations. These investigations open new prospects for controlled

studies of symmetry breaking and complex quantum magnetism in bulk BEC.
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Spontaneous pattern formation is a phenomenon ubiq-
uitous in nature. In particular it is a common theme be-
tween two fields of physics— phase transitions and
nonlinear dynamic systems. Phase transitions are often
associated with an equilibrium or ground state that breaks
the translational symmetry of the underlying system, ob-
servable as spatial structure. In extended nonlinear sys-
tems, on the other hand, structure may emerge as unstable
modes grow exponentially, amplifying a small initial fluc-
tuation. Bose-Einstein condensates of alkali atoms offer
unique opportunities to study both nonlinear dynamics [1–
5] and phase transitions [6–8] in the quantum regime.
Spinor Bose-Einstein condensates are of particular interest
due to their links with magnetic condensed matter systems.

Recent theoretical work on spatial structure formation in
spinor condensates has largely focused on the ferromag-
netic phase of F ¼ 1 87Rb Bose-Einstein condensates [9–
16], following the first ground-breaking experiments
[17,18]. In this system, structure formation is intuitively
understood as spatial separation of different spin states into
ferromagnetic domains. In addition, the dipole-dipole in-
teraction was found to play an important role in this system
[19–21]. In contrast, pattern formation in antiferromag-
netic systems is less intuitive and to our knowledge has
only been addressed in one very recent experiment [22].
There it was found that the trapping potential plays an
important role in inducing pattern-forming resonances.

In this Letter we report the first observation of sponta-
neous formation of regular spin structures in a quasi-1D
antiferromagnetic spinor condensate. In particular, we dis-
cuss the emergence of different spin-wave patterns as a
function of the external magnetic field and we show that
these patterns can be associated with unstable modes of the
Gross-Pitaevskii equation.

In our experiment, we prepare 87Rb F ¼ 2 atoms in the
fully stretched state in a transverse direction, such that the

spin vector is h ~Fi ¼ 2 ~ex in the corotating frame [23] [see

Fig. 2(a)]. This state maximizes the mean-field energy and
is therefore stationary but energetically unstable at zero
magnetic field, analogous to an inverted pendulum. Adding
a spatial degree of freedom thus makes it an ideal starting
point to investigate the formation of excited state patterns.
These patterns remain relatively stable due to the excellent
thermal insulation of cold atom systems. This approach
follows the concept of nonlinear dynamic evolution.
In order to study spatial pattern formation in the simplest

nontrivial case, we have developed a reliable method to
create extremely elongated Bose-Einstein condensates in
the optical potential of a single focused laser beam, with
trap frequencies!x;y;z ¼ 2�� ð85; 133; 0:8Þ Hz. The con-
densates are approximately 800 �m long and the calcu-
lated Thomas-Fermi radii perpendicular to the long axis
are 2:9 �m horizontally and 4:5 �m vertically. In the

transverse direction, the spin healing length �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@
2=2mg1hni

p � 3:4 �m is on the order of the size of the
condensate, effectively suppressing transverse spin struc-
ture and creating a quasi-1D geometry. A variable and
approximately homogeneous magnetic field, whose axial
gradient is canceled with a remaining curvature of
60 mG cm�2, is aligned with the axis of the trap.
Transverse residual magnetic fields are compensated to
less than 0.5 mG. The transverse stretched state is prepared
from the jF ¼ 1; mF ¼ �1i state by first adiabatically
transferring the atoms to jF ¼ 2; mF ¼ �2i using a mi-
crowave sweep and subsequently rotating the stretched
state into the transverse direction using a �=2 radio fre-
quency pulse. Finally, Stern-Gerlach separation during a
short time of flight allows us to image the individual spin
densities with a spatial resolution of �2 �m.
As a central result Fig. 1 shows the markedly regular

wavelike spin patterns that emerge after several hundred
milliseconds of free evolution in the elongated trap. These
patterns reveal two regimes with distinct symmetries,
which depend on the external magnetic field. At low mag-
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netic field [Figs. 1(b) and 1(c)] the pattern is antisymmetric
with respect to positive and negative mF, indicating an
alternating nonzero axial magnetization. It thus not only
breaks translational symmetry but also the mF ! �mF

symmetry of the initial spin state. The data suggest that
in this regime both the periodicity and growth rate scale
with the magnetic field [24]. In contrast, at high magnetic
field [Figs. 1(e) and 1(f)] the characteristic pattern is
symmetric with respect to mF and the axial component
of the spin vector Fz remains zero everywhere. In this
regime periodicity and growth rate do not change signifi-
cantly with the magnetic field. The crossover regime at
intermediate field [Fig. 1(d)] shows a less pronounced and
irregular spin structure. In all cases the patterns are tran-
sient and slowly decay into a chaotic small-scale structure
after several hundred milliseconds.

Figure 2 shows a simplified illustration of the patterns in
terms of local spin orientation. At low magnetic field
[Fig. 2(b)], the fully developed pattern appears as a
stretched state rotating in the yz plane as a function of

the z coordinate. This results in alternating ‘‘domains’’ of
oppositely oriented axial magnetization, separated by
transversely magnetized ‘‘domain walls.’’ At high mag-
netic field [Fig. 2(c)], the pattern resembles an mF ¼ 0
state whose axis of quantization oscillates from axial to
transverse and back.
The dynamics of spinor BEC is well captured by the

time-dependent Gross-Pitaeskii equation, which for the
case of constant density n can be written in terms of the
local spinor �m¼�F...F as ð�þ i@@=@tÞ�m ¼ @H =@��m.
The energy functional H comprises kinetic energy, qua-
dratic Zeeman effect, and interaction energy (given here
for F ¼ 2),

H ¼ H kin þ qhF2
z i þ n

2
½g0 þ g1

~hFi2 þ g2jS0j2�; (1)

where h�i denotes the local expectation value of the re-
spective spin operator and S0 ¼ �þ2��2 � �þ1��1 þ �20=2
is the local spin-singlet amplitude [25–27]. The interaction
parameters g0;1;2 are determined from the s-wave scatter-

ing lengths and correspond to the spin-independent (g0)
and spin-dependent (g1;2) parts of the mean-field interac-

tion, respectively. In our case, the g2 contribution is neg-
ligible and will be dropped in the following for the sake of
clarity. It is, however, included in our numerical calcula-
tions in the low-field case.
Previous experiments [23] have shown that spin dynam-

ics in the single-mode limit is driven purely by the com-
petition of quadratic Zeeman energy qhF2

z i and spin-

dependent interaction energy g1n
~hFi2=2, defining two

limiting cases— the interaction dominated regime at low

FIG. 1 (color online). Initial state (a) and saturated spin pat-
terns arising in spinor condensates for increasing magnetic field
(b)–(f). The individual 3D rendered false color absorption pro-
files in each image visualize the spatial density distribution for
each of the five magnetic projections mF ¼ �2 . . .þ 2 of the
F ¼ 2 hyperfine manifold. Imperfections in the preparation and
detection artifacts (e.g., optical interference fringes), which
appear as fluctuations visible in the initial state (a), are distinctly
different from the patterns of (b)–(f). The cases marked ‘‘�’’ are
chosen to represent the initial state, the interaction dominated
regime, and the Zeeman-dominated regime, respectively, and are
referred to in the following figures.

FIG. 2 (color online). Simplified illustration of the local spin
vector in Figs. 1(a), 1(c), and 1(e) (marked ‘‘�’’). (a) Initial state,
the spin vector is fully stretched and points in the transverse x
direction. (b) Interaction dominated regime, the spin vector is
fully stretched but rotates from axial to transverse and back over
one spatial period. (c) Zeeman-dominated regime, the local spin
vector has zero length but still a defined orientation (mF ¼ 0
state) that rotates from axial to transverse and back.
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magnetic field (g1n � q) and the Zeeman-dominated re-
gime (g1n 	 q) at high field. The two regimes are sepa-
rated by a crossover resonance where spin oscillation
amplitudes are dramatically enhanced while time scales
diverge. In the following, B ¼ 0:25 G (g1n=q ¼ 1:1) and
B ¼ 1:1 G (g1n=q ¼ 0:06) will be used as representatives
of the interaction and Zeeman regime, respectively [28].

In order to identify the unstable modes corresponding to
the observed patterns in the interaction and Zeeman re-
gime, we perform a linear stability analysis of the Gross-
Pitaevskii equation around a stationary state close to the
initial state prepared in the experiment. In the interaction
regime, i.e., for low magnetic fields, we analytically lin-
earize the GPE using a Bogoliubov ansatz. The stationary
state close to the initial state is obtained numerically from
the full GPE, and the corresponding Bogoliubov matrices
are numerically diagonalized to obtain the spectrum and
modes (Fig. 3).

In the Zeeman regime, i.e., for high magnetic field, the
quadratic Zeeman effect induces oscillations of the spin on
a much shorter time scale than pattern formation. We
eliminate this fast dynamics by applying a unitary trans-
formation U ¼ expð�iqF2

z t=@Þ and then dropping all ex-
plicitly time dependent terms from the linearized equations
(rotating wave approximation, RWA). Physically, this
amounts to averaging interactions over the spin oscillations
induced by the quadratic Zeeman effect. The RWA fully
removes the magnetic field dependence and allows us to

analytically find a stationary state j�0i ¼ ð0; 1=2; ffiffiffiffiffiffiffiffi

1=2
p

;
1=2; 0Þ, which again is close to the actual initial state. We
then proceed as in the low-field case to obtain the spectrum
(Fig. 3).

In both the interaction- and Zeeman-dominated regime a
single unstable mode exists, indicated by an imaginary
frequency over a certain range of wave vectors. Modes
with a complex frequency exponentially grow in time and

lead to spontaneously formed patterns by amplification of
arbitrarily small seeds. The characteristic spin pattern of
the identified modes indeed coincides very well with the
patterns observed experimentally (Fig. 4), suggesting
s-wave interactions as the dominant mechanism in their
formation. The linear instability predicted by the above
analysis is further confirmed by the exponential growth of
the modes as obtained from cross correlations of the mea-
sured spin densities (Fig. 5).
A quantitative comparison of the experimental data to

Bogoliubov theory (Fig. 3) reveals that at both B ¼ 0:25 G
and B ¼ 1:1 G, the wavelength is approximately 20%
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FIG. 3 (color online). Bogoliubov spectra resulting from a
linear stability analysis of the 1D GPE, (a) Interaction regime
at 0.25 G, (b) Zeeman regime at 1G. The interaction parameter
g1hni ¼ 2�� 5 Hz is obtained from the observation of homo-
geneous spin oscillations. For F ¼ 2, five pairs of complex
conjugate branches exist (of which only the positive real fre-
quencies are plotted). Branches with positive imaginary fre-
quency indicate unstable modes. Compare the most unstable
modes (squares) to the observed modes (crosses).

FIG. 4 (color online). Comparison of simulated Stern-Gerlach
images with experimental data in the linear growth regime,
(a) interaction dominated regime 0.25 G, (b) Zeeman-dominated
regime 1G. The mode pattern of the calculated most unstable
modes coincide with the experimentally observed modes during
linear growth.

FIG. 5 (color online). Cross correlations of spin densities.
(a) Interaction regime at 0.25 G, (b) Zeeman regime at 1.1 G.
Color-coded plots (left and right) of the normalized correlation
as a function of relative axial displacement and time of evolution
allow to determine the symmetry and spatial periodicity of the
evolving modes—(a) 28 �m and (b) 22 �m. The correlation
contrast (center) can be tracked over 2 orders of magnitude and
allows us to extract the growth rate of the mode (half the growth
rate of the correlation function)—(a) 20 s�1 and (b) 28 s�1.
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larger than predicted. Note that in both regimes it is on the
order of 2�� the spin healing length �s ¼ 3:4 �m and
much larger than the transverse size of the condensate,
justifying a posteriori our assumption of a quasi-1D ge-
ometry. The growth rate of the mode amplitude is 30%–
40% less than predicted. This is in reasonable agreement
with our mean-field calculations, taking into account the
approximations made in neglecting the axial trapping po-
tential and the limitations of a linearized Bogoliubov ap-
proach. With the very good agreement in the mode
structure and the clearly exponential growth observed,
we are confident to have correctly identified the mecha-
nism of pattern formation.

In conclusion, we have reported the spontaneous forma-
tion of regular spin patterns in an antiferromagnetic Bose-
Einstein condensate. Pattern formation occurs in one of
two distinct modes of characteristic symmetry, controlled
by the relative size of interaction and quadratic Zeeman
energy. We have been able to identify specific linear in-
stabilities of a simplified mean-field model as the driving
force of this breaking of translational symmetry. Our re-
sults thus demonstrate that purely local antiferromagnetic
interactions suffice to generate ordered spin textures, in
contrast to recent observations in ferromagnetic 87Rb F ¼
1 [18]. Our experiment and analysis also provide a visual
illustration of spatial multimode decoherence processes as
anticipated in [23], also linking it to decoherence studies
based on the Luttinger approach [29,30].

While linear stability analysis provides a conclusive
explanation of the variety and dynamics of modes observed
in experiment, it is a purely classical approach in character.
However, our work also opens a new perspective towards
fundamental quantum mechanical aspects of ultracold
matter. For example, having observed exponential growth,
the question of the origin of the fluctuations triggering
this growth immediately arises [31,32]. A back-of-the-
envelope calculation [33] provides an estimated initial
modulation on the order of the shot-noise of the number
of atoms contained within one half wavelength for our
experiment, suggesting that quantum effects might play a
significant role. Another interesting issue arises from the
similarities between coherent dynamics in spinor BEC and
optical nonlinearities. Interpreting density patterns as in-
terference between left- and right-propagating modes sug-
gests the possibility of entanglement as in spontaneous
parametric down-conversion. Thus, spinor Bose-Einstein
condensates may turn out to provide a new versatile tool to
explore quantum effects in nonlinear dynamics.
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A very recent work by M. Matuszewski [34] discusses
similar spin structures forF ¼ 1 condensates in the context
of roton instabilities.
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